tmp_suning_uos_patched/block/blk-integrity.c

468 lines
12 KiB
C
Raw Normal View History

/*
* blk-integrity.c - Block layer data integrity extensions
*
* Copyright (C) 2007, 2008 Oracle Corporation
* Written by: Martin K. Petersen <martin.petersen@oracle.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/mempool.h>
#include <linux/bio.h>
#include <linux/scatterlist.h>
#include <linux/export.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "blk.h"
/**
* blk_rq_count_integrity_sg - Count number of integrity scatterlist elements
* @q: request queue
* @bio: bio with integrity metadata attached
*
* Description: Returns the number of elements required in a
* scatterlist corresponding to the integrity metadata in a bio.
*/
int blk_rq_count_integrity_sg(struct request_queue *q, struct bio *bio)
{
struct bio_vec iv, ivprv = { NULL };
unsigned int segments = 0;
unsigned int seg_size = 0;
struct bvec_iter iter;
int prev = 0;
bio_for_each_integrity_vec(iv, bio, iter) {
if (prev) {
if (!BIOVEC_PHYS_MERGEABLE(&ivprv, &iv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, &ivprv, &iv))
goto new_segment;
if (seg_size + iv.bv_len > queue_max_segment_size(q))
goto new_segment;
seg_size += iv.bv_len;
} else {
new_segment:
segments++;
seg_size = iv.bv_len;
}
prev = 1;
ivprv = iv;
}
return segments;
}
EXPORT_SYMBOL(blk_rq_count_integrity_sg);
/**
* blk_rq_map_integrity_sg - Map integrity metadata into a scatterlist
* @q: request queue
* @bio: bio with integrity metadata attached
* @sglist: target scatterlist
*
* Description: Map the integrity vectors in request into a
* scatterlist. The scatterlist must be big enough to hold all
* elements. I.e. sized using blk_rq_count_integrity_sg().
*/
int blk_rq_map_integrity_sg(struct request_queue *q, struct bio *bio,
struct scatterlist *sglist)
{
struct bio_vec iv, ivprv = { NULL };
struct scatterlist *sg = NULL;
unsigned int segments = 0;
struct bvec_iter iter;
int prev = 0;
bio_for_each_integrity_vec(iv, bio, iter) {
if (prev) {
if (!BIOVEC_PHYS_MERGEABLE(&ivprv, &iv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, &ivprv, &iv))
goto new_segment;
if (sg->length + iv.bv_len > queue_max_segment_size(q))
goto new_segment;
sg->length += iv.bv_len;
} else {
new_segment:
if (!sg)
sg = sglist;
else {
sg_unmark_end(sg);
sg = sg_next(sg);
}
sg_set_page(sg, iv.bv_page, iv.bv_len, iv.bv_offset);
segments++;
}
prev = 1;
ivprv = iv;
}
if (sg)
sg_mark_end(sg);
return segments;
}
EXPORT_SYMBOL(blk_rq_map_integrity_sg);
/**
* blk_integrity_compare - Compare integrity profile of two disks
* @gd1: Disk to compare
* @gd2: Disk to compare
*
* Description: Meta-devices like DM and MD need to verify that all
* sub-devices use the same integrity format before advertising to
* upper layers that they can send/receive integrity metadata. This
* function can be used to check whether two gendisk devices have
* compatible integrity formats.
*/
int blk_integrity_compare(struct gendisk *gd1, struct gendisk *gd2)
{
struct blk_integrity *b1 = &gd1->queue->integrity;
struct blk_integrity *b2 = &gd2->queue->integrity;
if (!b1->profile && !b2->profile)
return 0;
if (!b1->profile || !b2->profile)
return -1;
if (b1->interval_exp != b2->interval_exp) {
pr_err("%s: %s/%s protection interval %u != %u\n",
__func__, gd1->disk_name, gd2->disk_name,
1 << b1->interval_exp, 1 << b2->interval_exp);
return -1;
}
if (b1->tuple_size != b2->tuple_size) {
pr_err("%s: %s/%s tuple sz %u != %u\n", __func__,
gd1->disk_name, gd2->disk_name,
b1->tuple_size, b2->tuple_size);
return -1;
}
if (b1->tag_size && b2->tag_size && (b1->tag_size != b2->tag_size)) {
pr_err("%s: %s/%s tag sz %u != %u\n", __func__,
gd1->disk_name, gd2->disk_name,
b1->tag_size, b2->tag_size);
return -1;
}
if (b1->profile != b2->profile) {
pr_err("%s: %s/%s type %s != %s\n", __func__,
gd1->disk_name, gd2->disk_name,
b1->profile->name, b2->profile->name);
return -1;
}
return 0;
}
EXPORT_SYMBOL(blk_integrity_compare);
bool blk_integrity_merge_rq(struct request_queue *q, struct request *req,
struct request *next)
{
if (blk_integrity_rq(req) == 0 && blk_integrity_rq(next) == 0)
return true;
if (blk_integrity_rq(req) == 0 || blk_integrity_rq(next) == 0)
return false;
if (bio_integrity(req->bio)->bip_flags !=
bio_integrity(next->bio)->bip_flags)
return false;
if (req->nr_integrity_segments + next->nr_integrity_segments >
q->limits.max_integrity_segments)
return false;
if (integrity_req_gap_back_merge(req, next->bio))
return false;
return true;
}
EXPORT_SYMBOL(blk_integrity_merge_rq);
bool blk_integrity_merge_bio(struct request_queue *q, struct request *req,
struct bio *bio)
{
int nr_integrity_segs;
struct bio *next = bio->bi_next;
if (blk_integrity_rq(req) == 0 && bio_integrity(bio) == NULL)
return true;
if (blk_integrity_rq(req) == 0 || bio_integrity(bio) == NULL)
return false;
if (bio_integrity(req->bio)->bip_flags != bio_integrity(bio)->bip_flags)
return false;
bio->bi_next = NULL;
nr_integrity_segs = blk_rq_count_integrity_sg(q, bio);
bio->bi_next = next;
if (req->nr_integrity_segments + nr_integrity_segs >
q->limits.max_integrity_segments)
return false;
req->nr_integrity_segments += nr_integrity_segs;
return true;
}
EXPORT_SYMBOL(blk_integrity_merge_bio);
struct integrity_sysfs_entry {
struct attribute attr;
ssize_t (*show)(struct blk_integrity *, char *);
ssize_t (*store)(struct blk_integrity *, const char *, size_t);
};
static ssize_t integrity_attr_show(struct kobject *kobj, struct attribute *attr,
char *page)
{
struct gendisk *disk = container_of(kobj, struct gendisk, integrity_kobj);
struct blk_integrity *bi = &disk->queue->integrity;
struct integrity_sysfs_entry *entry =
container_of(attr, struct integrity_sysfs_entry, attr);
return entry->show(bi, page);
}
static ssize_t integrity_attr_store(struct kobject *kobj,
struct attribute *attr, const char *page,
size_t count)
{
struct gendisk *disk = container_of(kobj, struct gendisk, integrity_kobj);
struct blk_integrity *bi = &disk->queue->integrity;
struct integrity_sysfs_entry *entry =
container_of(attr, struct integrity_sysfs_entry, attr);
ssize_t ret = 0;
if (entry->store)
ret = entry->store(bi, page, count);
return ret;
}
static ssize_t integrity_format_show(struct blk_integrity *bi, char *page)
{
if (bi->profile && bi->profile->name)
return sprintf(page, "%s\n", bi->profile->name);
else
return sprintf(page, "none\n");
}
static ssize_t integrity_tag_size_show(struct blk_integrity *bi, char *page)
{
return sprintf(page, "%u\n", bi->tag_size);
}
static ssize_t integrity_interval_show(struct blk_integrity *bi, char *page)
{
return sprintf(page, "%u\n",
bi->interval_exp ? 1 << bi->interval_exp : 0);
}
static ssize_t integrity_verify_store(struct blk_integrity *bi,
const char *page, size_t count)
{
char *p = (char *) page;
unsigned long val = simple_strtoul(p, &p, 10);
if (val)
bi->flags |= BLK_INTEGRITY_VERIFY;
else
bi->flags &= ~BLK_INTEGRITY_VERIFY;
return count;
}
static ssize_t integrity_verify_show(struct blk_integrity *bi, char *page)
{
return sprintf(page, "%d\n", (bi->flags & BLK_INTEGRITY_VERIFY) != 0);
}
static ssize_t integrity_generate_store(struct blk_integrity *bi,
const char *page, size_t count)
{
char *p = (char *) page;
unsigned long val = simple_strtoul(p, &p, 10);
if (val)
bi->flags |= BLK_INTEGRITY_GENERATE;
else
bi->flags &= ~BLK_INTEGRITY_GENERATE;
return count;
}
static ssize_t integrity_generate_show(struct blk_integrity *bi, char *page)
{
return sprintf(page, "%d\n", (bi->flags & BLK_INTEGRITY_GENERATE) != 0);
}
static ssize_t integrity_device_show(struct blk_integrity *bi, char *page)
{
return sprintf(page, "%u\n",
(bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) != 0);
}
static struct integrity_sysfs_entry integrity_format_entry = {
.attr = { .name = "format", .mode = S_IRUGO },
.show = integrity_format_show,
};
static struct integrity_sysfs_entry integrity_tag_size_entry = {
.attr = { .name = "tag_size", .mode = S_IRUGO },
.show = integrity_tag_size_show,
};
static struct integrity_sysfs_entry integrity_interval_entry = {
.attr = { .name = "protection_interval_bytes", .mode = S_IRUGO },
.show = integrity_interval_show,
};
static struct integrity_sysfs_entry integrity_verify_entry = {
.attr = { .name = "read_verify", .mode = S_IRUGO | S_IWUSR },
.show = integrity_verify_show,
.store = integrity_verify_store,
};
static struct integrity_sysfs_entry integrity_generate_entry = {
.attr = { .name = "write_generate", .mode = S_IRUGO | S_IWUSR },
.show = integrity_generate_show,
.store = integrity_generate_store,
};
static struct integrity_sysfs_entry integrity_device_entry = {
.attr = { .name = "device_is_integrity_capable", .mode = S_IRUGO },
.show = integrity_device_show,
};
static struct attribute *integrity_attrs[] = {
&integrity_format_entry.attr,
&integrity_tag_size_entry.attr,
&integrity_interval_entry.attr,
&integrity_verify_entry.attr,
&integrity_generate_entry.attr,
&integrity_device_entry.attr,
NULL,
};
static const struct sysfs_ops integrity_ops = {
.show = &integrity_attr_show,
.store = &integrity_attr_store,
};
static struct kobj_type integrity_ktype = {
.default_attrs = integrity_attrs,
.sysfs_ops = &integrity_ops,
};
static int blk_integrity_nop_fn(struct blk_integrity_iter *iter)
{
return 0;
}
static struct blk_integrity_profile nop_profile = {
.name = "nop",
.generate_fn = blk_integrity_nop_fn,
.verify_fn = blk_integrity_nop_fn,
};
/**
* blk_integrity_register - Register a gendisk as being integrity-capable
* @disk: struct gendisk pointer to make integrity-aware
* @template: block integrity profile to register
*
* Description: When a device needs to advertise itself as being able to
* send/receive integrity metadata it must use this function to register
* the capability with the block layer. The template is a blk_integrity
* struct with values appropriate for the underlying hardware. See
* Documentation/block/data-integrity.txt.
*/
void blk_integrity_register(struct gendisk *disk, struct blk_integrity *template)
{
struct blk_integrity *bi = &disk->queue->integrity;
bi->flags = BLK_INTEGRITY_VERIFY | BLK_INTEGRITY_GENERATE |
template->flags;
bi->interval_exp = ilog2(queue_logical_block_size(disk->queue));
bi->profile = template->profile ? template->profile : &nop_profile;
bi->tuple_size = template->tuple_size;
bi->tag_size = template->tag_size;
blk_integrity_revalidate(disk);
}
EXPORT_SYMBOL(blk_integrity_register);
/**
* blk_integrity_unregister - Unregister block integrity profile
* @disk: disk whose integrity profile to unregister
*
* Description: This function unregisters the integrity capability from
* a block device.
*/
void blk_integrity_unregister(struct gendisk *disk)
{
blk_integrity_revalidate(disk);
memset(&disk->queue->integrity, 0, sizeof(struct blk_integrity));
}
EXPORT_SYMBOL(blk_integrity_unregister);
void blk_integrity_revalidate(struct gendisk *disk)
{
struct blk_integrity *bi = &disk->queue->integrity;
if (!(disk->flags & GENHD_FL_UP))
return;
if (bi->profile)
disk->queue->backing_dev_info.capabilities |=
BDI_CAP_STABLE_WRITES;
else
disk->queue->backing_dev_info.capabilities &=
~BDI_CAP_STABLE_WRITES;
}
bdi: allow block devices to say that they require stable page writes This patchset ("stable page writes, part 2") makes some key modifications to the original 'stable page writes' patchset. First, it provides creators (devices and filesystems) of a backing_dev_info a flag that declares whether or not it is necessary to ensure that page contents cannot change during writeout. It is no longer assumed that this is true of all devices (which was never true anyway). Second, the flag is used to relaxed the wait_on_page_writeback calls so that wait only occurs if the device needs it. Third, it fixes up the remaining disk-backed filesystems to use this improved conditional-wait logic to provide stable page writes on those filesystems. It is hoped that (for people not using checksumming devices, anyway) this patchset will give back unnecessary performance decreases since the original stable page write patchset went into 3.0. Sorry about not fixing it sooner. Complaints were registered by several people about the long write latencies introduced by the original stable page write patchset. Generally speaking, the kernel ought to allocate as little extra memory as possible to facilitate writeout, but for people who simply cannot wait, a second page stability strategy is (re)introduced: snapshotting page contents. The waiting behavior is still the default strategy; to enable page snapshotting, a superblock flag (MS_SNAP_STABLE) must be set. This flag is used to bandaid^Henable stable page writeback on ext3[1], and is not used anywhere else. Given that there are already a few storage devices and network FSes that have rolled their own page stability wait/page snapshot code, it would be nice to move towards consolidating all of these. It seems possible that iscsi and raid5 may wish to use the new stable page write support to enable zero-copy writeout. Thank you to Jan Kara for helping fix a couple more filesystems. Per Andrew Morton's request, here are the result of using dbench to measure latencies on ext2: 3.8.0-rc3: Operation Count AvgLat MaxLat ---------------------------------------- WriteX 109347 0.028 59.817 ReadX 347180 0.004 3.391 Flush 15514 29.828 287.283 Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms 3.8.0-rc3 + patches: WriteX 105556 0.029 4.273 ReadX 335004 0.005 4.112 Flush 14982 30.540 298.634 Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms As you can see, for ext2 the maximum write latency decreases from ~60ms on a laptop hard disk to ~4ms. I'm not sure why the flush latencies increase, though I suspect that being able to dirty pages faster gives the flusher more work to do. On ext4, the average write latency decreases as well as all the maximum latencies: 3.8.0-rc3: WriteX 85624 0.152 33.078 ReadX 272090 0.010 61.210 Flush 12129 36.219 168.260 Throughput 44.8618 MB/sec 4 clients 4 procs max_latency=168.276 ms 3.8.0-rc3 + patches: WriteX 86082 0.141 30.928 ReadX 273358 0.010 36.124 Flush 12214 34.800 165.689 Throughput 44.9941 MB/sec 4 clients 4 procs max_latency=165.722 ms XFS seems to exhibit similar latency improvements as ext2: 3.8.0-rc3: WriteX 125739 0.028 104.343 ReadX 399070 0.005 4.115 Flush 17851 25.004 131.390 Throughput 66.0024 MB/sec 4 clients 4 procs max_latency=131.406 ms 3.8.0-rc3 + patches: WriteX 123529 0.028 6.299 ReadX 392434 0.005 4.287 Flush 17549 25.120 188.687 Throughput 64.9113 MB/sec 4 clients 4 procs max_latency=188.704 ms ...and btrfs, just to round things out, also shows some latency decreases: 3.8.0-rc3: WriteX 67122 0.083 82.355 ReadX 212719 0.005 2.828 Flush 9547 47.561 147.418 Throughput 35.3391 MB/sec 4 clients 4 procs max_latency=147.433 ms 3.8.0-rc3 + patches: WriteX 64898 0.101 71.631 ReadX 206673 0.005 7.123 Flush 9190 47.963 219.034 Throughput 34.0795 MB/sec 4 clients 4 procs max_latency=219.044 ms Before this patchset, all filesystems would block, regardless of whether or not it was necessary. ext3 would wait, but still generate occasional checksum errors. The network filesystems were left to do their own thing, so they'd wait too. After this patchset, all the disk filesystems except ext3 and btrfs will wait only if the hardware requires it. ext3 (if necessary) snapshots pages instead of blocking, and btrfs provides its own bdi so the mm will never wait. Network filesystems haven't been touched, so either they provide their own wait code, or they don't block at all. The blocking behavior is back to what it was before 3.0 if you don't have a disk requiring stable page writes. This patchset has been tested on 3.8.0-rc3 on x64 with ext3, ext4, and xfs. I've spot-checked 3.8.0-rc4 and seem to be getting the same results as -rc3. [1] The alternative fixes to ext3 include fixing the locking order and page bit handling like we did for ext4 (but then why not just use ext4?), or setting PG_writeback so early that ext3 becomes extremely slow. I tried that, but the number of write()s I could initiate dropped by nearly an order of magnitude. That was a bit much even for the author of the stable page series! :) This patch: Creates a per-backing-device flag that tracks whether or not pages must be held immutable during writeout. Eventually it will be used to waive wait_for_page_writeback() if nothing requires stable pages. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Ron Minnich <rminnich@sandia.gov> Cc: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-22 08:42:48 +08:00
void blk_integrity_add(struct gendisk *disk)
{
if (kobject_init_and_add(&disk->integrity_kobj, &integrity_ktype,
&disk_to_dev(disk)->kobj, "%s", "integrity"))
return;
kobject_uevent(&disk->integrity_kobj, KOBJ_ADD);
}
void blk_integrity_del(struct gendisk *disk)
{
kobject_uevent(&disk->integrity_kobj, KOBJ_REMOVE);
kobject_del(&disk->integrity_kobj);
kobject_put(&disk->integrity_kobj);
}