Merge branch 'pm-sleep'

* pm-sleep:
  freezer: Fix typo in freezable_schedule_timeout() comment
  PM / s2idle: Clear the events_check_enabled flag
  PM / sleep: Remove pm_complete_with_resume_check()
  PM: ARM: locomo: Drop suspend and resume bus type callbacks
  PM: Use a more common logging style
  PM: Document rules on using pm_runtime_resume() in system suspend callbacks
This commit is contained in:
Rafael J. Wysocki 2017-11-13 01:41:20 +01:00
commit 05d658b5b5
10 changed files with 103 additions and 143 deletions

View File

@ -328,7 +328,10 @@ the phases are: ``prepare``, ``suspend``, ``suspend_late``, ``suspend_noirq``.
After the ``->prepare`` callback method returns, no new children may be
registered below the device. The method may also prepare the device or
driver in some way for the upcoming system power transition, but it
should not put the device into a low-power state.
should not put the device into a low-power state. Moreover, if the
device supports runtime power management, the ``->prepare`` callback
method must not update its state in case it is necessary to resume it
from runtime suspend later on.
For devices supporting runtime power management, the return value of the
prepare callback can be used to indicate to the PM core that it may
@ -356,6 +359,16 @@ the phases are: ``prepare``, ``suspend``, ``suspend_late``, ``suspend_noirq``.
the appropriate low-power state, depending on the bus type the device is
on, and they may enable wakeup events.
However, for devices supporting runtime power management, the
``->suspend`` methods provided by subsystems (bus types and PM domains
in particular) must follow an additional rule regarding what can be done
to the devices before their drivers' ``->suspend`` methods are called.
Namely, they can only resume the devices from runtime suspend by
calling :c:func:`pm_runtime_resume` for them, if that is necessary, and
they must not update the state of the devices in any other way at that
time (in case the drivers need to resume the devices from runtime
suspend in their ``->suspend`` methods).
3. For a number of devices it is convenient to split suspend into the
"quiesce device" and "save device state" phases, in which cases
``suspend_late`` is meant to do the latter. It is always executed after
@ -729,6 +742,16 @@ state temporarily, for example so that its system wakeup capability can be
disabled. This all depends on the hardware and the design of the subsystem and
device driver in question.
If it is necessary to resume a device from runtime suspend during a system-wide
transition into a sleep state, that can be done by calling
:c:func:`pm_runtime_resume` for it from the ``->suspend`` callback (or its
couterpart for transitions related to hibernation) of either the device's driver
or a subsystem responsible for it (for example, a bus type or a PM domain).
That is guaranteed to work by the requirement that subsystems must not change
the state of devices (possibly except for resuming them from runtime suspend)
from their ``->prepare`` and ``->suspend`` callbacks (or equivalent) *before*
invoking device drivers' ``->suspend`` callbacks (or equivalent).
During system-wide resume from a sleep state it's easiest to put devices into
the full-power state, as explained in :file:`Documentation/power/runtime_pm.txt`.
Refer to that document for more information regarding this particular issue as

View File

@ -826,28 +826,6 @@ static int locomo_match(struct device *_dev, struct device_driver *_drv)
return dev->devid == drv->devid;
}
static int locomo_bus_suspend(struct device *dev, pm_message_t state)
{
struct locomo_dev *ldev = LOCOMO_DEV(dev);
struct locomo_driver *drv = LOCOMO_DRV(dev->driver);
int ret = 0;
if (drv && drv->suspend)
ret = drv->suspend(ldev, state);
return ret;
}
static int locomo_bus_resume(struct device *dev)
{
struct locomo_dev *ldev = LOCOMO_DEV(dev);
struct locomo_driver *drv = LOCOMO_DRV(dev->driver);
int ret = 0;
if (drv && drv->resume)
ret = drv->resume(ldev);
return ret;
}
static int locomo_bus_probe(struct device *dev)
{
struct locomo_dev *ldev = LOCOMO_DEV(dev);
@ -875,8 +853,6 @@ struct bus_type locomo_bus_type = {
.match = locomo_match,
.probe = locomo_bus_probe,
.remove = locomo_bus_remove,
.suspend = locomo_bus_suspend,
.resume = locomo_bus_resume,
};
int locomo_driver_register(struct locomo_driver *driver)

View File

@ -189,8 +189,6 @@ struct locomo_driver {
unsigned int devid;
int (*probe)(struct locomo_dev *);
int (*remove)(struct locomo_dev *);
int (*suspend)(struct locomo_dev *, pm_message_t);
int (*resume)(struct locomo_dev *);
};
#define LOCOMO_DRV(_d) container_of((_d), struct locomo_driver, drv)

View File

@ -9,7 +9,6 @@
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/export.h>
#include <linux/suspend.h>
#ifdef CONFIG_PM
/**
@ -298,26 +297,4 @@ void pm_generic_complete(struct device *dev)
if (drv && drv->pm && drv->pm->complete)
drv->pm->complete(dev);
}
/**
* pm_complete_with_resume_check - Complete a device power transition.
* @dev: Device to handle.
*
* Complete a device power transition during a system-wide power transition and
* optionally schedule a runtime resume of the device if the system resume in
* progress has been initated by the platform firmware and the device had its
* power.direct_complete flag set.
*/
void pm_complete_with_resume_check(struct device *dev)
{
pm_generic_complete(dev);
/*
* If the device had been runtime-suspended before the system went into
* the sleep state it is going out of and it has never been resumed till
* now, resume it in case the firmware powered it up.
*/
if (dev->power.direct_complete && pm_resume_via_firmware())
pm_request_resume(dev);
}
EXPORT_SYMBOL_GPL(pm_complete_with_resume_check);
#endif /* CONFIG_PM_SLEEP */

View File

@ -182,7 +182,7 @@ static inline void freezable_schedule_unsafe(void)
}
/*
* Like freezable_schedule_timeout(), but should not block the freezer. Do not
* Like schedule_timeout(), but should not block the freezer. Do not
* call this with locks held.
*/
static inline long freezable_schedule_timeout(long timeout)

View File

@ -736,7 +736,6 @@ extern int pm_generic_poweroff_noirq(struct device *dev);
extern int pm_generic_poweroff_late(struct device *dev);
extern int pm_generic_poweroff(struct device *dev);
extern void pm_generic_complete(struct device *dev);
extern void pm_complete_with_resume_check(struct device *dev);
#else /* !CONFIG_PM_SLEEP */

View File

@ -701,8 +701,8 @@ static int __init pm_qos_power_init(void)
for (i = PM_QOS_CPU_DMA_LATENCY; i < PM_QOS_NUM_CLASSES; i++) {
ret = register_pm_qos_misc(pm_qos_array[i], d);
if (ret < 0) {
printk(KERN_ERR "pm_qos_param: %s setup failed\n",
pm_qos_array[i]->name);
pr_err("%s: %s setup failed\n",
__func__, pm_qos_array[i]->name);
return ret;
}
}

View File

@ -10,6 +10,8 @@
*
*/
#define pr_fmt(fmt) "PM: " fmt
#include <linux/version.h>
#include <linux/module.h>
#include <linux/mm.h>
@ -967,7 +969,7 @@ void __init __register_nosave_region(unsigned long start_pfn,
region->end_pfn = end_pfn;
list_add_tail(&region->list, &nosave_regions);
Report:
printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
}
@ -1039,7 +1041,7 @@ static void mark_nosave_pages(struct memory_bitmap *bm)
list_for_each_entry(region, &nosave_regions, list) {
unsigned long pfn;
pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
(unsigned long long) region->start_pfn << PAGE_SHIFT,
((unsigned long long) region->end_pfn << PAGE_SHIFT)
- 1);
@ -1095,7 +1097,7 @@ int create_basic_memory_bitmaps(void)
free_pages_map = bm2;
mark_nosave_pages(forbidden_pages_map);
pr_debug("PM: Basic memory bitmaps created\n");
pr_debug("Basic memory bitmaps created\n");
return 0;
@ -1131,7 +1133,7 @@ void free_basic_memory_bitmaps(void)
memory_bm_free(bm2, PG_UNSAFE_CLEAR);
kfree(bm2);
pr_debug("PM: Basic memory bitmaps freed\n");
pr_debug("Basic memory bitmaps freed\n");
}
void clear_free_pages(void)
@ -1152,7 +1154,7 @@ void clear_free_pages(void)
pfn = memory_bm_next_pfn(bm);
}
memory_bm_position_reset(bm);
pr_info("PM: free pages cleared after restore\n");
pr_info("free pages cleared after restore\n");
#endif /* PAGE_POISONING_ZERO */
}
@ -1690,7 +1692,7 @@ int hibernate_preallocate_memory(void)
ktime_t start, stop;
int error;
printk(KERN_INFO "PM: Preallocating image memory... ");
pr_info("Preallocating image memory... ");
start = ktime_get();
error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
@ -1821,13 +1823,13 @@ int hibernate_preallocate_memory(void)
out:
stop = ktime_get();
printk(KERN_CONT "done (allocated %lu pages)\n", pages);
pr_cont("done (allocated %lu pages)\n", pages);
swsusp_show_speed(start, stop, pages, "Allocated");
return 0;
err_out:
printk(KERN_CONT "\n");
pr_cont("\n");
swsusp_free();
return -ENOMEM;
}
@ -1867,8 +1869,8 @@ static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
free += zone_page_state(zone, NR_FREE_PAGES);
nr_pages += count_pages_for_highmem(nr_highmem);
pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
nr_pages, PAGES_FOR_IO, free);
pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
nr_pages, PAGES_FOR_IO, free);
return free > nr_pages + PAGES_FOR_IO;
}
@ -1961,20 +1963,20 @@ asmlinkage __visible int swsusp_save(void)
{
unsigned int nr_pages, nr_highmem;
printk(KERN_INFO "PM: Creating hibernation image:\n");
pr_info("Creating hibernation image:\n");
drain_local_pages(NULL);
nr_pages = count_data_pages();
nr_highmem = count_highmem_pages();
printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
if (!enough_free_mem(nr_pages, nr_highmem)) {
printk(KERN_ERR "PM: Not enough free memory\n");
pr_err("Not enough free memory\n");
return -ENOMEM;
}
if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
printk(KERN_ERR "PM: Memory allocation failed\n");
pr_err("Memory allocation failed\n");
return -ENOMEM;
}
@ -1995,8 +1997,7 @@ asmlinkage __visible int swsusp_save(void)
nr_copy_pages = nr_pages;
nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
nr_pages);
pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
return 0;
}
@ -2170,7 +2171,7 @@ static int check_header(struct swsusp_info *info)
if (!reason && info->num_physpages != get_num_physpages())
reason = "memory size";
if (reason) {
printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
pr_err("Image mismatch: %s\n", reason);
return -EPERM;
}
return 0;

View File

@ -437,7 +437,6 @@ static int suspend_enter(suspend_state_t state, bool *wakeup)
error = suspend_ops->enter(state);
trace_suspend_resume(TPS("machine_suspend"),
state, false);
events_check_enabled = false;
} else if (*wakeup) {
error = -EBUSY;
}
@ -582,6 +581,7 @@ static int enter_state(suspend_state_t state)
pm_restore_gfp_mask();
Finish:
events_check_enabled = false;
pm_pr_dbg("Finishing wakeup.\n");
suspend_finish();
Unlock:

View File

@ -12,6 +12,8 @@
*
*/
#define pr_fmt(fmt) "PM: " fmt
#include <linux/module.h>
#include <linux/file.h>
#include <linux/delay.h>
@ -241,9 +243,9 @@ static void hib_end_io(struct bio *bio)
struct page *page = bio->bi_io_vec[0].bv_page;
if (bio->bi_status) {
printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
}
if (bio_data_dir(bio) == WRITE)
@ -273,8 +275,8 @@ static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
bio_set_op_attrs(bio, op, op_flags);
if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
(unsigned long long)bio->bi_iter.bi_sector);
pr_err("Adding page to bio failed at %llu\n",
(unsigned long long)bio->bi_iter.bi_sector);
bio_put(bio);
return -EFAULT;
}
@ -319,7 +321,7 @@ static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
swsusp_resume_block, swsusp_header, NULL);
} else {
printk(KERN_ERR "PM: Swap header not found!\n");
pr_err("Swap header not found!\n");
error = -ENODEV;
}
return error;
@ -413,8 +415,7 @@ static int get_swap_writer(struct swap_map_handle *handle)
ret = swsusp_swap_check();
if (ret) {
if (ret != -ENOSPC)
printk(KERN_ERR "PM: Cannot find swap device, try "
"swapon -a.\n");
pr_err("Cannot find swap device, try swapon -a\n");
return ret;
}
handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
@ -491,9 +492,9 @@ static int swap_writer_finish(struct swap_map_handle *handle,
{
if (!error) {
flush_swap_writer(handle);
printk(KERN_INFO "PM: S");
pr_info("S");
error = mark_swapfiles(handle, flags);
printk("|\n");
pr_cont("|\n");
}
if (error)
@ -542,7 +543,7 @@ static int save_image(struct swap_map_handle *handle,
hib_init_batch(&hb);
printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
pr_info("Saving image data pages (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
@ -557,8 +558,8 @@ static int save_image(struct swap_map_handle *handle,
if (ret)
break;
if (!(nr_pages % m))
printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
nr_pages / m * 10);
pr_info("Image saving progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
@ -566,7 +567,7 @@ static int save_image(struct swap_map_handle *handle,
if (!ret)
ret = err2;
if (!ret)
printk(KERN_INFO "PM: Image saving done.\n");
pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
return ret;
}
@ -692,14 +693,14 @@ static int save_image_lzo(struct swap_map_handle *handle,
page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
if (!page) {
printk(KERN_ERR "PM: Failed to allocate LZO page\n");
pr_err("Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
printk(KERN_ERR "PM: Failed to allocate LZO data\n");
pr_err("Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
@ -708,7 +709,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
printk(KERN_ERR "PM: Failed to allocate crc\n");
pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
@ -726,8 +727,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
"image_compress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
printk(KERN_ERR
"PM: Cannot start compression threads\n");
pr_err("Cannot start compression threads\n");
ret = -ENOMEM;
goto out_clean;
}
@ -749,7 +749,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
@ -760,10 +760,9 @@ static int save_image_lzo(struct swap_map_handle *handle,
*/
handle->reqd_free_pages = reqd_free_pages();
printk(KERN_INFO
"PM: Using %u thread(s) for compression.\n"
"PM: Compressing and saving image data (%u pages)...\n",
nr_threads, nr_to_write);
pr_info("Using %u thread(s) for compression\n", nr_threads);
pr_info("Compressing and saving image data (%u pages)...\n",
nr_to_write);
m = nr_to_write / 10;
if (!m)
m = 1;
@ -783,10 +782,8 @@ static int save_image_lzo(struct swap_map_handle *handle,
data_of(*snapshot), PAGE_SIZE);
if (!(nr_pages % m))
printk(KERN_INFO
"PM: Image saving progress: "
"%3d%%\n",
nr_pages / m * 10);
pr_info("Image saving progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
if (!off)
@ -813,15 +810,14 @@ static int save_image_lzo(struct swap_map_handle *handle,
ret = data[thr].ret;
if (ret < 0) {
printk(KERN_ERR "PM: LZO compression failed\n");
pr_err("LZO compression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(data[thr].unc_len))) {
printk(KERN_ERR
"PM: Invalid LZO compressed length\n");
pr_err("Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
@ -857,7 +853,7 @@ static int save_image_lzo(struct swap_map_handle *handle,
if (!ret)
ret = err2;
if (!ret)
printk(KERN_INFO "PM: Image saving done.\n");
pr_info("Image saving done\n");
swsusp_show_speed(start, stop, nr_to_write, "Wrote");
out_clean:
if (crc) {
@ -888,7 +884,7 @@ static int enough_swap(unsigned int nr_pages, unsigned int flags)
unsigned int free_swap = count_swap_pages(root_swap, 1);
unsigned int required;
pr_debug("PM: Free swap pages: %u\n", free_swap);
pr_debug("Free swap pages: %u\n", free_swap);
required = PAGES_FOR_IO + nr_pages;
return free_swap > required;
@ -915,12 +911,12 @@ int swsusp_write(unsigned int flags)
pages = snapshot_get_image_size();
error = get_swap_writer(&handle);
if (error) {
printk(KERN_ERR "PM: Cannot get swap writer\n");
pr_err("Cannot get swap writer\n");
return error;
}
if (flags & SF_NOCOMPRESS_MODE) {
if (!enough_swap(pages, flags)) {
printk(KERN_ERR "PM: Not enough free swap\n");
pr_err("Not enough free swap\n");
error = -ENOSPC;
goto out_finish;
}
@ -1068,8 +1064,7 @@ static int load_image(struct swap_map_handle *handle,
hib_init_batch(&hb);
clean_pages_on_read = true;
printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
nr_to_read);
pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
@ -1087,8 +1082,8 @@ static int load_image(struct swap_map_handle *handle,
if (ret)
break;
if (!(nr_pages % m))
printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
nr_pages / m * 10);
pr_info("Image loading progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
}
err2 = hib_wait_io(&hb);
@ -1096,7 +1091,7 @@ static int load_image(struct swap_map_handle *handle,
if (!ret)
ret = err2;
if (!ret) {
printk(KERN_INFO "PM: Image loading done.\n");
pr_info("Image loading done\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
@ -1190,14 +1185,14 @@ static int load_image_lzo(struct swap_map_handle *handle,
page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
if (!page) {
printk(KERN_ERR "PM: Failed to allocate LZO page\n");
pr_err("Failed to allocate LZO page\n");
ret = -ENOMEM;
goto out_clean;
}
data = vmalloc(sizeof(*data) * nr_threads);
if (!data) {
printk(KERN_ERR "PM: Failed to allocate LZO data\n");
pr_err("Failed to allocate LZO data\n");
ret = -ENOMEM;
goto out_clean;
}
@ -1206,7 +1201,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
crc = kmalloc(sizeof(*crc), GFP_KERNEL);
if (!crc) {
printk(KERN_ERR "PM: Failed to allocate crc\n");
pr_err("Failed to allocate crc\n");
ret = -ENOMEM;
goto out_clean;
}
@ -1226,8 +1221,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
"image_decompress/%u", thr);
if (IS_ERR(data[thr].thr)) {
data[thr].thr = NULL;
printk(KERN_ERR
"PM: Cannot start decompression threads\n");
pr_err("Cannot start decompression threads\n");
ret = -ENOMEM;
goto out_clean;
}
@ -1249,7 +1243,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
if (IS_ERR(crc->thr)) {
crc->thr = NULL;
printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
pr_err("Cannot start CRC32 thread\n");
ret = -ENOMEM;
goto out_clean;
}
@ -1274,8 +1268,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
if (!page[i]) {
if (i < LZO_CMP_PAGES) {
ring_size = i;
printk(KERN_ERR
"PM: Failed to allocate LZO pages\n");
pr_err("Failed to allocate LZO pages\n");
ret = -ENOMEM;
goto out_clean;
} else {
@ -1285,10 +1278,9 @@ static int load_image_lzo(struct swap_map_handle *handle,
}
want = ring_size = i;
printk(KERN_INFO
"PM: Using %u thread(s) for decompression.\n"
"PM: Loading and decompressing image data (%u pages)...\n",
nr_threads, nr_to_read);
pr_info("Using %u thread(s) for decompression\n", nr_threads);
pr_info("Loading and decompressing image data (%u pages)...\n",
nr_to_read);
m = nr_to_read / 10;
if (!m)
m = 1;
@ -1348,8 +1340,7 @@ static int load_image_lzo(struct swap_map_handle *handle,
if (unlikely(!data[thr].cmp_len ||
data[thr].cmp_len >
lzo1x_worst_compress(LZO_UNC_SIZE))) {
printk(KERN_ERR
"PM: Invalid LZO compressed length\n");
pr_err("Invalid LZO compressed length\n");
ret = -1;
goto out_finish;
}
@ -1400,16 +1391,14 @@ static int load_image_lzo(struct swap_map_handle *handle,
ret = data[thr].ret;
if (ret < 0) {
printk(KERN_ERR
"PM: LZO decompression failed\n");
pr_err("LZO decompression failed\n");
goto out_finish;
}
if (unlikely(!data[thr].unc_len ||
data[thr].unc_len > LZO_UNC_SIZE ||
data[thr].unc_len & (PAGE_SIZE - 1))) {
printk(KERN_ERR
"PM: Invalid LZO uncompressed length\n");
pr_err("Invalid LZO uncompressed length\n");
ret = -1;
goto out_finish;
}
@ -1420,10 +1409,8 @@ static int load_image_lzo(struct swap_map_handle *handle,
data[thr].unc + off, PAGE_SIZE);
if (!(nr_pages % m))
printk(KERN_INFO
"PM: Image loading progress: "
"%3d%%\n",
nr_pages / m * 10);
pr_info("Image loading progress: %3d%%\n",
nr_pages / m * 10);
nr_pages++;
ret = snapshot_write_next(snapshot);
@ -1448,15 +1435,14 @@ static int load_image_lzo(struct swap_map_handle *handle,
}
stop = ktime_get();
if (!ret) {
printk(KERN_INFO "PM: Image loading done.\n");
pr_info("Image loading done\n");
snapshot_write_finalize(snapshot);
if (!snapshot_image_loaded(snapshot))
ret = -ENODATA;
if (!ret) {
if (swsusp_header->flags & SF_CRC32_MODE) {
if(handle->crc32 != swsusp_header->crc32) {
printk(KERN_ERR
"PM: Invalid image CRC32!\n");
pr_err("Invalid image CRC32!\n");
ret = -ENODATA;
}
}
@ -1513,9 +1499,9 @@ int swsusp_read(unsigned int *flags_p)
swap_reader_finish(&handle);
end:
if (!error)
pr_debug("PM: Image successfully loaded\n");
pr_debug("Image successfully loaded\n");
else
pr_debug("PM: Error %d resuming\n", error);
pr_debug("Error %d resuming\n", error);
return error;
}
@ -1552,13 +1538,13 @@ int swsusp_check(void)
if (error)
blkdev_put(hib_resume_bdev, FMODE_READ);
else
pr_debug("PM: Image signature found, resuming\n");
pr_debug("Image signature found, resuming\n");
} else {
error = PTR_ERR(hib_resume_bdev);
}
if (error)
pr_debug("PM: Image not found (code %d)\n", error);
pr_debug("Image not found (code %d)\n", error);
return error;
}
@ -1570,7 +1556,7 @@ int swsusp_check(void)
void swsusp_close(fmode_t mode)
{
if (IS_ERR(hib_resume_bdev)) {
pr_debug("PM: Image device not initialised\n");
pr_debug("Image device not initialised\n");
return;
}
@ -1594,7 +1580,7 @@ int swsusp_unmark(void)
swsusp_resume_block,
swsusp_header, NULL);
} else {
printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
pr_err("Cannot find swsusp signature!\n");
error = -ENODEV;
}