Merge branch 'akpm' (patches from Andrew)

Merge fifth set of updates from Andrew Morton:

 - A few things which were awaiting merges from linux-next:
     - rtc
     - ocfs2
     - misc others

 - Willy's "dax" feature: direct fs access to memory (mainly NV-DIMMs)
   which isn't backed by pageframes.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (37 commits)
  rtc: add driver for DS1685 family of real time clocks
  MAINTAINERS: add entry for Maxim PMICs on Samsung boards
  lib/Kconfig: use bool instead of boolean
  powerpc: drop _PAGE_FILE and pte_file()-related helpers
  ocfs2: set append dio as a ro compat feature
  ocfs2: wait for orphan recovery first once append O_DIRECT write crash
  ocfs2: complete the rest request through buffer io
  ocfs2: do not fallback to buffer I/O write if appending
  ocfs2: allocate blocks in ocfs2_direct_IO_get_blocks
  ocfs2: implement ocfs2_direct_IO_write
  ocfs2: add orphan recovery types in ocfs2_recover_orphans
  ocfs2: add functions to add and remove inode in orphan dir
  ocfs2: prepare some interfaces used in append direct io
  MAINTAINERS: fix spelling mistake & remove trailing WS
  dax: does not work correctly with virtual aliasing caches
  brd: rename XIP to DAX
  ext4: add DAX functionality
  dax: add dax_zero_page_range
  ext2: get rid of most mentions of XIP in ext2
  ext2: remove ext2_aops_xip
  ...
This commit is contained in:
Linus Torvalds 2015-02-17 08:38:30 -08:00
commit c397f8fa43
72 changed files with 4491 additions and 946 deletions

View File

@ -34,6 +34,9 @@ configfs/
- directory containing configfs documentation and example code.
cramfs.txt
- info on the cram filesystem for small storage (ROMs etc).
dax.txt
- info on avoiding the page cache for files stored on CPU-addressable
storage devices.
debugfs.txt
- info on the debugfs filesystem.
devpts.txt
@ -154,5 +157,3 @@ xfs-self-describing-metadata.txt
- info on XFS Self Describing Metadata.
xfs.txt
- info and mount options for the XFS filesystem.
xip.txt
- info on execute-in-place for file mappings.

View File

@ -199,8 +199,6 @@ prototypes:
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
int (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
int (*get_xip_mem)(struct address_space *, pgoff_t, int, void **,
unsigned long *);
int (*migratepage)(struct address_space *, struct page *, struct page *);
int (*launder_page)(struct page *);
int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);
@ -225,7 +223,6 @@ invalidatepage: yes
releasepage: yes
freepage: yes
direct_IO:
get_xip_mem: maybe
migratepage: yes (both)
launder_page: yes
is_partially_uptodate: yes

View File

@ -0,0 +1,94 @@
Direct Access for files
-----------------------
Motivation
----------
The page cache is usually used to buffer reads and writes to files.
It is also used to provide the pages which are mapped into userspace
by a call to mmap.
For block devices that are memory-like, the page cache pages would be
unnecessary copies of the original storage. The DAX code removes the
extra copy by performing reads and writes directly to the storage device.
For file mappings, the storage device is mapped directly into userspace.
Usage
-----
If you have a block device which supports DAX, you can make a filesystem
on it as usual. When mounting it, use the -o dax option manually
or add 'dax' to the options in /etc/fstab.
Implementation Tips for Block Driver Writers
--------------------------------------------
To support DAX in your block driver, implement the 'direct_access'
block device operation. It is used to translate the sector number
(expressed in units of 512-byte sectors) to a page frame number (pfn)
that identifies the physical page for the memory. It also returns a
kernel virtual address that can be used to access the memory.
The direct_access method takes a 'size' parameter that indicates the
number of bytes being requested. The function should return the number
of bytes that can be contiguously accessed at that offset. It may also
return a negative errno if an error occurs.
In order to support this method, the storage must be byte-accessible by
the CPU at all times. If your device uses paging techniques to expose
a large amount of memory through a smaller window, then you cannot
implement direct_access. Equally, if your device can occasionally
stall the CPU for an extended period, you should also not attempt to
implement direct_access.
These block devices may be used for inspiration:
- axonram: Axon DDR2 device driver
- brd: RAM backed block device driver
- dcssblk: s390 dcss block device driver
Implementation Tips for Filesystem Writers
------------------------------------------
Filesystem support consists of
- adding support to mark inodes as being DAX by setting the S_DAX flag in
i_flags
- implementing the direct_IO address space operation, and calling
dax_do_io() instead of blockdev_direct_IO() if S_DAX is set
- implementing an mmap file operation for DAX files which sets the
VM_MIXEDMAP flag on the VMA, and setting the vm_ops to include handlers
for fault and page_mkwrite (which should probably call dax_fault() and
dax_mkwrite(), passing the appropriate get_block() callback)
- calling dax_truncate_page() instead of block_truncate_page() for DAX files
- calling dax_zero_page_range() instead of zero_user() for DAX files
- ensuring that there is sufficient locking between reads, writes,
truncates and page faults
The get_block() callback passed to the DAX functions may return
uninitialised extents. If it does, it must ensure that simultaneous
calls to get_block() (for example by a page-fault racing with a read()
or a write()) work correctly.
These filesystems may be used for inspiration:
- ext2: the second extended filesystem, see Documentation/filesystems/ext2.txt
- ext4: the fourth extended filesystem, see Documentation/filesystems/ext4.txt
Shortcomings
------------
Even if the kernel or its modules are stored on a filesystem that supports
DAX on a block device that supports DAX, they will still be copied into RAM.
The DAX code does not work correctly on architectures which have virtually
mapped caches such as ARM, MIPS and SPARC.
Calling get_user_pages() on a range of user memory that has been mmaped
from a DAX file will fail as there are no 'struct page' to describe
those pages. This problem is being worked on. That means that O_DIRECT
reads/writes to those memory ranges from a non-DAX file will fail (note
that O_DIRECT reads/writes _of a DAX file_ do work, it is the memory
that is being accessed that is key here). Other things that will not
work include RDMA, sendfile() and splice().

View File

@ -20,6 +20,9 @@ minixdf Makes `df' act like Minix.
check=none, nocheck (*) Don't do extra checking of bitmaps on mount
(check=normal and check=strict options removed)
dax Use direct access (no page cache). See
Documentation/filesystems/dax.txt.
debug Extra debugging information is sent to the
kernel syslog. Useful for developers.
@ -56,8 +59,6 @@ noacl Don't support POSIX ACLs.
nobh Do not attach buffer_heads to file pagecache.
xip Use execute in place (no caching) if possible
grpquota,noquota,quota,usrquota Quota options are silently ignored by ext2.

View File

@ -386,6 +386,10 @@ max_dir_size_kb=n This limits the size of directories so that any
i_version Enable 64-bit inode version support. This option is
off by default.
dax Use direct access (no page cache). See
Documentation/filesystems/dax.txt. Note that
this option is incompatible with data=journal.
Data Mode
=========
There are 3 different data modes:

View File

@ -591,8 +591,6 @@ struct address_space_operations {
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
ssize_t (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
struct page* (*get_xip_page)(struct address_space *, sector_t,
int);
/* migrate the contents of a page to the specified target */
int (*migratepage) (struct page *, struct page *);
int (*launder_page) (struct page *);
@ -748,11 +746,6 @@ struct address_space_operations {
and transfer data directly between the storage and the
application's address space.
get_xip_page: called by the VM to translate a block number to a page.
The page is valid until the corresponding filesystem is unmounted.
Filesystems that want to use execute-in-place (XIP) need to implement
it. An example implementation can be found in fs/ext2/xip.c.
migrate_page: This is used to compact the physical memory usage.
If the VM wants to relocate a page (maybe off a memory card
that is signalling imminent failure) it will pass a new page

View File

@ -1,71 +0,0 @@
Execute-in-place for file mappings
----------------------------------
Motivation
----------
File mappings are performed by mapping page cache pages to userspace. In
addition, read&write type file operations also transfer data from/to the page
cache.
For memory backed storage devices that use the block device interface, the page
cache pages are in fact copies of the original storage. Various approaches
exist to work around the need for an extra copy. The ramdisk driver for example
does read the data into the page cache, keeps a reference, and discards the
original data behind later on.
Execute-in-place solves this issue the other way around: instead of keeping
data in the page cache, the need to have a page cache copy is eliminated
completely. With execute-in-place, read&write type operations are performed
directly from/to the memory backed storage device. For file mappings, the
storage device itself is mapped directly into userspace.
This implementation was initially written for shared memory segments between
different virtual machines on s390 hardware to allow multiple machines to
share the same binaries and libraries.
Implementation
--------------
Execute-in-place is implemented in three steps: block device operation,
address space operation, and file operations.
A block device operation named direct_access is used to translate the
block device sector number to a page frame number (pfn) that identifies
the physical page for the memory. It also returns a kernel virtual
address that can be used to access the memory.
The direct_access method takes a 'size' parameter that indicates the
number of bytes being requested. The function should return the number
of bytes that can be contiguously accessed at that offset. It may also
return a negative errno if an error occurs.
The block device operation is optional, these block devices support it as of
today:
- dcssblk: s390 dcss block device driver
An address space operation named get_xip_mem is used to retrieve references
to a page frame number and a kernel address. To obtain these values a reference
to an address_space is provided. This function assigns values to the kmem and
pfn parameters. The third argument indicates whether the function should allocate
blocks if needed.
This address space operation is mutually exclusive with readpage&writepage that
do page cache read/write operations.
The following filesystems support it as of today:
- ext2: the second extended filesystem, see Documentation/filesystems/ext2.txt
A set of file operations that do utilize get_xip_page can be found in
mm/filemap_xip.c . The following file operation implementations are provided:
- aio_read/aio_write
- readv/writev
- sendfile
The generic file operations do_sync_read/do_sync_write can be used to implement
classic synchronous IO calls.
Shortcomings
------------
This implementation is limited to storage devices that are cpu addressable at
all times (no highmem or such). It works well on rom/ram, but enhancements are
needed to make it work with flash in read+write mode.
Putting the Linux kernel and/or its modules on a xip filesystem does not mean
they are not copied.

View File

@ -34,7 +34,7 @@ trivial patch so apply some common sense.
generalized kernel feature ready for next time.
PLEASE check your patch with the automated style checker
(scripts/checkpatch.pl) to catch trival style violations.
(scripts/checkpatch.pl) to catch trivial style violations.
See Documentation/CodingStyle for guidance here.
PLEASE CC: the maintainers and mailing lists that are generated
@ -2965,6 +2965,12 @@ S: Supported
F: drivers/input/touchscreen/cyttsp*
F: include/linux/input/cyttsp.h
DALLAS/MAXIM DS1685-FAMILY REAL TIME CLOCK
M: Joshua Kinard <kumba@gentoo.org>
S: Maintained
F: drivers/rtc/rtc-ds1685.c
F: include/linux/rtc/ds1685.h
DAMA SLAVE for AX.25
M: Joerg Reuter <jreuter@yaina.de>
W: http://yaina.de/jreuter/
@ -3153,6 +3159,12 @@ L: linux-i2c@vger.kernel.org
S: Maintained
F: drivers/i2c/busses/i2c-diolan-u2c.c
DIRECT ACCESS (DAX)
M: Matthew Wilcox <willy@linux.intel.com>
L: linux-fsdevel@vger.kernel.org
S: Supported
F: fs/dax.c
DIRECTORY NOTIFICATION (DNOTIFY)
M: Eric Paris <eparis@parisplace.org>
S: Maintained
@ -6212,6 +6224,26 @@ S: Supported
F: drivers/power/max14577_charger.c
F: drivers/power/max77693_charger.c
MAXIM PMIC AND MUIC DRIVERS FOR EXYNOS BASED BOARDS
M: Chanwoo Choi <cw00.choi@samsung.com>
M: Krzysztof Kozlowski <k.kozlowski@samsung.com>
L: linux-kernel@vger.kernel.org
S: Supported
F: drivers/*/max14577.c
F: drivers/*/max77686.c
F: drivers/*/max77693.c
F: drivers/extcon/extcon-max14577.c
F: drivers/extcon/extcon-max77693.c
F: drivers/rtc/rtc-max77686.c
F: drivers/clk/clk-max77686.c
F: Documentation/devicetree/bindings/mfd/max14577.txt
F: Documentation/devicetree/bindings/mfd/max77686.txt
F: Documentation/devicetree/bindings/mfd/max77693.txt
F: Documentation/devicetree/bindings/clock/maxim,max77686.txt
F: include/linux/mfd/max14577*.h
F: include/linux/mfd/max77686*.h
F: include/linux/mfd/max77693*.h
MAXIRADIO FM RADIO RECEIVER DRIVER
M: Hans Verkuil <hverkuil@xs4all.nl>
L: linux-media@vger.kernel.org

View File

@ -58,7 +58,7 @@ &i2c0 {
status = "okay";
isl9305: isl9305@68 {
compatible = "isl,isl9305";
compatible = "isil,isl9305";
reg = <0x68>;
regulators {

View File

@ -333,8 +333,8 @@ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
*_PAGE_HASHPTE bit (if used). -- paulus
* must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
* -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
@ -342,11 +342,6 @@ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
/* Encode and decode a nonlinear file mapping entry */
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
#ifndef CONFIG_PPC_4K_PAGES
void pgtable_cache_init(void);
#else

View File

@ -352,9 +352,6 @@ static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
void pgtable_cache_init(void);
@ -389,7 +386,7 @@ void pgtable_cache_init(void);
* The last three bits are intentionally left to zero. This memory location
* are also used as normal page PTE pointers. So if we have any pointers
* left around while we collapse a hugepage, we need to make sure
* _PAGE_PRESENT and _PAGE_FILE bits of that are zero when we look at them
* _PAGE_PRESENT bit of that is zero when we look at them
*/
static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
{

View File

@ -34,7 +34,6 @@ static inline int pte_write(pte_t pte)
{ return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; }
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }

View File

@ -38,7 +38,6 @@
*/
#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */

View File

@ -44,9 +44,6 @@
* - PRESENT *must* be in the bottom three bits because swap cache
* entries use the top 29 bits for TLB2.
*
* - FILE *must* be in the bottom three bits because swap cache
* entries use the top 29 bits for TLB2.
*
* - CACHE COHERENT bit (M) has no effect on original PPC440 cores,
* because it doesn't support SMP. However, some later 460 variants
* have -some- form of SMP support and so I keep the bit there for
@ -68,7 +65,6 @@
*
* There are three protection bits available for SWAP entry:
* _PAGE_PRESENT
* _PAGE_FILE
* _PAGE_HASHPTE (if HW has)
*
* So those three bits have to be inside of 0-2nd LSB of PTE.
@ -77,7 +73,6 @@
#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
#define _PAGE_RW 0x00000002 /* S: Write permission */
#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
#define _PAGE_EXEC 0x00000004 /* H: Execute permission */
#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
#define _PAGE_DIRTY 0x00000010 /* S: Page dirty */

View File

@ -29,7 +29,6 @@
/* Definitions for 8xx embedded chips. */
#define _PAGE_PRESENT 0x0001 /* Page is valid */
#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
#define _PAGE_SPECIAL 0x0008 /* SW entry, forced to 0 by the TLB miss */

View File

@ -10,7 +10,6 @@
/* Architected bits */
#define _PAGE_PRESENT 0x000001 /* software: pte contains a translation */
#define _PAGE_FILE 0x000002 /* (!present only) software: pte holds file offset */
#define _PAGE_SW1 0x000002
#define _PAGE_BAP_SR 0x000004
#define _PAGE_BAP_UR 0x000008

View File

@ -13,14 +13,11 @@
- PRESENT *must* be in the bottom three bits because swap cache
entries use the top 29 bits.
- FILE *must* be in the bottom three bits because swap cache
entries use the top 29 bits.
*/
/* Definitions for FSL Book-E Cores */
#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */
#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */
#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */
#define _PAGE_RW 0x00004 /* S: Write permission (SW) */
#define _PAGE_DIRTY 0x00008 /* S: Page dirty */
#define _PAGE_EXEC 0x00010 /* H: SX permission */

View File

@ -18,7 +18,6 @@
#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
#define _PAGE_USER 0x004 /* usermode access allowed */
#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */

View File

@ -16,7 +16,6 @@
*/
#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
#define _PAGE_USER 0x0002 /* matches one of the PP bits */
#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
#define _PAGE_GUARDED 0x0008
/* We can derive Memory coherence from _PAGE_NO_CACHE */

View File

@ -782,7 +782,7 @@ pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
pmd_t pmd;
/*
* For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
* For a valid pte, we would have _PAGE_PRESENT always
* set. We use this to check THP page at pmd level.
* leaf pte for huge page, bottom two bits != 00
*/

View File

@ -393,14 +393,15 @@ config BLK_DEV_RAM_SIZE
The default value is 4096 kilobytes. Only change this if you know
what you are doing.
config BLK_DEV_XIP
bool "Support XIP filesystems on RAM block device"
depends on BLK_DEV_RAM
config BLK_DEV_RAM_DAX
bool "Support Direct Access (DAX) to RAM block devices"
depends on BLK_DEV_RAM && FS_DAX
default n
help
Support XIP filesystems (such as ext2 with XIP support on) on
top of block ram device. This will slightly enlarge the kernel, and
will prevent RAM block device backing store memory from being
Support filesystems using DAX to access RAM block devices. This
avoids double-buffering data in the page cache before copying it
to the block device. Answering Y will slightly enlarge the kernel,
and will prevent RAM block device backing store memory from being
allocated from highmem (only a problem for highmem systems).
config CDROM_PKTCDVD

View File

@ -97,13 +97,13 @@ static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*
* Cannot support XIP and highmem, because our ->direct_access
* routine for XIP must return memory that is always addressable.
* If XIP was reworked to use pfns and kmap throughout, this
* Cannot support DAX and highmem, because our ->direct_access
* routine for DAX must return memory that is always addressable.
* If DAX was reworked to use pfns and kmap throughout, this
* restriction might be able to be lifted.
*/
gfp_flags = GFP_NOIO | __GFP_ZERO;
#ifndef CONFIG_BLK_DEV_XIP
#ifndef CONFIG_BLK_DEV_RAM_DAX
gfp_flags |= __GFP_HIGHMEM;
#endif
page = alloc_page(gfp_flags);
@ -369,7 +369,7 @@ static int brd_rw_page(struct block_device *bdev, sector_t sector,
return err;
}
#ifdef CONFIG_BLK_DEV_XIP
#ifdef CONFIG_BLK_DEV_RAM_DAX
static long brd_direct_access(struct block_device *bdev, sector_t sector,
void **kaddr, unsigned long *pfn, long size)
{
@ -390,6 +390,8 @@ static long brd_direct_access(struct block_device *bdev, sector_t sector,
*/
return PAGE_SIZE;
}
#else
#define brd_direct_access NULL
#endif
static int brd_ioctl(struct block_device *bdev, fmode_t mode,
@ -430,9 +432,7 @@ static const struct block_device_operations brd_fops = {
.owner = THIS_MODULE,
.rw_page = brd_rw_page,
.ioctl = brd_ioctl,
#ifdef CONFIG_BLK_DEV_XIP
.direct_access = brd_direct_access,
#endif
};
/*

View File

@ -801,6 +801,96 @@ config RTC_DRV_DS1553
This driver can also be built as a module. If so, the module
will be called rtc-ds1553.
config RTC_DRV_DS1685_FAMILY
tristate "Dallas/Maxim DS1685 Family"
help
If you say yes here you get support for the Dallas/Maxim DS1685
family of real time chips. This family includes the DS1685/DS1687,
DS1689/DS1693, DS17285/DS17287, DS17485/DS17487, and
DS17885/DS17887 chips.
This driver can also be built as a module. If so, the module
will be called rtc-ds1685.
choice
prompt "Subtype"
depends on RTC_DRV_DS1685_FAMILY
default RTC_DRV_DS1685
config RTC_DRV_DS1685
bool "DS1685/DS1687"
help
This enables support for the Dallas/Maxim DS1685/DS1687 real time
clock chip.
This chip is commonly found in SGI O2 (IP32) and SGI Octane (IP30)
systems, as well as EPPC-405-UC modules by electronic system design
GmbH.
config RTC_DRV_DS1689
bool "DS1689/DS1693"
help
This enables support for the Dallas/Maxim DS1689/DS1693 real time
clock chip.
This is an older RTC chip, supplanted by the DS1685/DS1687 above,
which supports a few minor features such as Vcc, Vbat, and Power
Cycle counters, plus a customer-specific, 8-byte ROM/Serial number.
It also works for the even older DS1688/DS1691 RTC chips, which are
virtually the same and carry the same model number. Both chips
have 114 bytes of user NVRAM.
config RTC_DRV_DS17285
bool "DS17285/DS17287"
help
This enables support for the Dallas/Maxim DS17285/DS17287 real time
clock chip.
This chip features 2kb of extended NV-SRAM. It may possibly be
found in some SGI O2 systems (rare).
config RTC_DRV_DS17485
bool "DS17485/DS17487"
help
This enables support for the Dallas/Maxim DS17485/DS17487 real time
clock chip.
This chip features 4kb of extended NV-SRAM.
config RTC_DRV_DS17885
bool "DS17885/DS17887"
help
This enables support for the Dallas/Maxim DS17885/DS17887 real time
clock chip.
This chip features 8kb of extended NV-SRAM.
endchoice
config RTC_DS1685_PROC_REGS
bool "Display register values in /proc"
depends on RTC_DRV_DS1685_FAMILY && PROC_FS
help
Enable this to display a readout of all of the RTC registers in
/proc/drivers/rtc. Keep in mind that this can potentially lead
to lost interrupts, as reading Control Register C will clear
all pending IRQ flags.
Unless you are debugging this driver, choose N.
config RTC_DS1685_SYSFS_REGS
bool "SysFS access to RTC register bits"
depends on RTC_DRV_DS1685_FAMILY && SYSFS
help
Enable this to provide access to the RTC control register bits
in /sys. Some of the bits are read-write, others are read-only.
Keep in mind that reading Control C's bits automatically clears
all pending IRQ flags - this can cause lost interrupts.
If you know that you need access to these bits, choose Y, Else N.
config RTC_DRV_DS1742
tristate "Maxim/Dallas DS1742/1743"
depends on HAS_IOMEM

View File

@ -54,6 +54,7 @@ obj-$(CONFIG_RTC_DRV_DS1390) += rtc-ds1390.o
obj-$(CONFIG_RTC_DRV_DS1511) += rtc-ds1511.o
obj-$(CONFIG_RTC_DRV_DS1553) += rtc-ds1553.o
obj-$(CONFIG_RTC_DRV_DS1672) += rtc-ds1672.o
obj-$(CONFIG_RTC_DRV_DS1685_FAMILY) += rtc-ds1685.o
obj-$(CONFIG_RTC_DRV_DS1742) += rtc-ds1742.o
obj-$(CONFIG_RTC_DRV_DS2404) += rtc-ds2404.o
obj-$(CONFIG_RTC_DRV_DS3232) += rtc-ds3232.o

2252
drivers/rtc/rtc-ds1685.c Normal file

File diff suppressed because it is too large Load Diff

View File

@ -275,7 +275,8 @@ static int isl12022_probe(struct i2c_client *client,
#ifdef CONFIG_OF
static const struct of_device_id isl12022_dt_match[] = {
{ .compatible = "isl,isl12022" },
{ .compatible = "isl,isl12022" }, /* for backward compat., don't use */
{ .compatible = "isil,isl12022" },
{ },
};
#endif

View File

@ -644,7 +644,8 @@ static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend,
#ifdef CONFIG_OF
static const struct of_device_id isl12057_dt_match[] = {
{ .compatible = "isl,isl12057" },
{ .compatible = "isl,isl12057" }, /* for backward compat., don't use */
{ .compatible = "isil,isl12057" },
{ },
};
#endif

View File

@ -537,8 +537,8 @@ static const struct i2c_device_id isl29028_id[] = {
MODULE_DEVICE_TABLE(i2c, isl29028_id);
static const struct of_device_id isl29028_of_match[] = {
{ .compatible = "isl,isl29028", },
{ .compatible = "isil,isl29028", },/* deprecated, don't use */
{ .compatible = "isl,isl29028", }, /* for backward compat., don't use */
{ .compatible = "isil,isl29028", },
{ },
};
MODULE_DEVICE_TABLE(of, isl29028_of_match);

View File

@ -13,13 +13,6 @@ if BLOCK
source "fs/ext2/Kconfig"
source "fs/ext3/Kconfig"
source "fs/ext4/Kconfig"
config FS_XIP
# execute in place
bool
depends on EXT2_FS_XIP
default y
source "fs/jbd/Kconfig"
source "fs/jbd2/Kconfig"
@ -40,6 +33,21 @@ source "fs/ocfs2/Kconfig"
source "fs/btrfs/Kconfig"
source "fs/nilfs2/Kconfig"
config FS_DAX
bool "Direct Access (DAX) support"
depends on MMU
depends on !(ARM || MIPS || SPARC)
help
Direct Access (DAX) can be used on memory-backed block devices.
If the block device supports DAX and the filesystem supports DAX,
then you can avoid using the pagecache to buffer I/Os. Turning
on this option will compile in support for DAX; you will need to
mount the filesystem using the -o dax option.
If you do not have a block device that is capable of using this,
or if unsure, say N. Saying Y will increase the size of the kernel
by about 5kB.
endif # BLOCK
# Posix ACL utility routines

View File

@ -28,6 +28,7 @@ obj-$(CONFIG_SIGNALFD) += signalfd.o
obj-$(CONFIG_TIMERFD) += timerfd.o
obj-$(CONFIG_EVENTFD) += eventfd.o
obj-$(CONFIG_AIO) += aio.o
obj-$(CONFIG_FS_DAX) += dax.o
obj-$(CONFIG_FILE_LOCKING) += locks.o
obj-$(CONFIG_COMPAT) += compat.o compat_ioctl.o
obj-$(CONFIG_BINFMT_AOUT) += binfmt_aout.o

534
fs/dax.c Normal file
View File

@ -0,0 +1,534 @@
/*
* fs/dax.c - Direct Access filesystem code
* Copyright (c) 2013-2014 Intel Corporation
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/uio.h>
#include <linux/vmstat.h>
int dax_clear_blocks(struct inode *inode, sector_t block, long size)
{
struct block_device *bdev = inode->i_sb->s_bdev;
sector_t sector = block << (inode->i_blkbits - 9);
might_sleep();
do {
void *addr;
unsigned long pfn;
long count;
count = bdev_direct_access(bdev, sector, &addr, &pfn, size);
if (count < 0)
return count;
BUG_ON(size < count);
while (count > 0) {
unsigned pgsz = PAGE_SIZE - offset_in_page(addr);
if (pgsz > count)
pgsz = count;
if (pgsz < PAGE_SIZE)
memset(addr, 0, pgsz);
else
clear_page(addr);
addr += pgsz;
size -= pgsz;
count -= pgsz;
BUG_ON(pgsz & 511);
sector += pgsz / 512;
cond_resched();
}
} while (size);
return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_blocks);
static long dax_get_addr(struct buffer_head *bh, void **addr, unsigned blkbits)
{
unsigned long pfn;
sector_t sector = bh->b_blocknr << (blkbits - 9);
return bdev_direct_access(bh->b_bdev, sector, addr, &pfn, bh->b_size);
}
static void dax_new_buf(void *addr, unsigned size, unsigned first, loff_t pos,
loff_t end)
{
loff_t final = end - pos + first; /* The final byte of the buffer */
if (first > 0)
memset(addr, 0, first);
if (final < size)
memset(addr + final, 0, size - final);
}
static bool buffer_written(struct buffer_head *bh)
{
return buffer_mapped(bh) && !buffer_unwritten(bh);
}
/*
* When ext4 encounters a hole, it returns without modifying the buffer_head
* which means that we can't trust b_size. To cope with this, we set b_state
* to 0 before calling get_block and, if any bit is set, we know we can trust
* b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
* and would save us time calling get_block repeatedly.
*/
static bool buffer_size_valid(struct buffer_head *bh)
{
return bh->b_state != 0;
}
static ssize_t dax_io(int rw, struct inode *inode, struct iov_iter *iter,
loff_t start, loff_t end, get_block_t get_block,
struct buffer_head *bh)
{
ssize_t retval = 0;
loff_t pos = start;
loff_t max = start;
loff_t bh_max = start;
void *addr;
bool hole = false;
if (rw != WRITE)
end = min(end, i_size_read(inode));
while (pos < end) {
unsigned len;
if (pos == max) {
unsigned blkbits = inode->i_blkbits;
sector_t block = pos >> blkbits;
unsigned first = pos - (block << blkbits);
long size;
if (pos == bh_max) {
bh->b_size = PAGE_ALIGN(end - pos);
bh->b_state = 0;
retval = get_block(inode, block, bh,
rw == WRITE);
if (retval)
break;
if (!buffer_size_valid(bh))
bh->b_size = 1 << blkbits;
bh_max = pos - first + bh->b_size;
} else {
unsigned done = bh->b_size -
(bh_max - (pos - first));
bh->b_blocknr += done >> blkbits;
bh->b_size -= done;
}
hole = (rw != WRITE) && !buffer_written(bh);
if (hole) {
addr = NULL;
size = bh->b_size - first;
} else {
retval = dax_get_addr(bh, &addr, blkbits);
if (retval < 0)
break;
if (buffer_unwritten(bh) || buffer_new(bh))
dax_new_buf(addr, retval, first, pos,
end);
addr += first;
size = retval - first;
}
max = min(pos + size, end);
}
if (rw == WRITE)
len = copy_from_iter(addr, max - pos, iter);
else if (!hole)
len = copy_to_iter(addr, max - pos, iter);
else
len = iov_iter_zero(max - pos, iter);
if (!len)
break;
pos += len;
addr += len;
}
return (pos == start) ? retval : pos - start;
}
/**
* dax_do_io - Perform I/O to a DAX file
* @rw: READ to read or WRITE to write
* @iocb: The control block for this I/O
* @inode: The file which the I/O is directed at
* @iter: The addresses to do I/O from or to
* @pos: The file offset where the I/O starts
* @get_block: The filesystem method used to translate file offsets to blocks
* @end_io: A filesystem callback for I/O completion
* @flags: See below
*
* This function uses the same locking scheme as do_blockdev_direct_IO:
* If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
* caller for writes. For reads, we take and release the i_mutex ourselves.
* If DIO_LOCKING is not set, the filesystem takes care of its own locking.
* As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
* is in progress.
*/
ssize_t dax_do_io(int rw, struct kiocb *iocb, struct inode *inode,
struct iov_iter *iter, loff_t pos,
get_block_t get_block, dio_iodone_t end_io, int flags)
{
struct buffer_head bh;
ssize_t retval = -EINVAL;
loff_t end = pos + iov_iter_count(iter);
memset(&bh, 0, sizeof(bh));
if ((flags & DIO_LOCKING) && (rw == READ)) {
struct address_space *mapping = inode->i_mapping;
mutex_lock(&inode->i_mutex);
retval = filemap_write_and_wait_range(mapping, pos, end - 1);
if (retval) {
mutex_unlock(&inode->i_mutex);
goto out;
}
}
/* Protects against truncate */
atomic_inc(&inode->i_dio_count);
retval = dax_io(rw, inode, iter, pos, end, get_block, &bh);
if ((flags & DIO_LOCKING) && (rw == READ))
mutex_unlock(&inode->i_mutex);
if ((retval > 0) && end_io)
end_io(iocb, pos, retval, bh.b_private);
inode_dio_done(inode);
out:
return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
/*
* The user has performed a load from a hole in the file. Allocating
* a new page in the file would cause excessive storage usage for
* workloads with sparse files. We allocate a page cache page instead.
* We'll kick it out of the page cache if it's ever written to,
* otherwise it will simply fall out of the page cache under memory
* pressure without ever having been dirtied.
*/
static int dax_load_hole(struct address_space *mapping, struct page *page,
struct vm_fault *vmf)
{
unsigned long size;
struct inode *inode = mapping->host;
if (!page)
page = find_or_create_page(mapping, vmf->pgoff,
GFP_KERNEL | __GFP_ZERO);
if (!page)
return VM_FAULT_OOM;
/* Recheck i_size under page lock to avoid truncate race */
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size) {
unlock_page(page);
page_cache_release(page);
return VM_FAULT_SIGBUS;
}
vmf->page = page;
return VM_FAULT_LOCKED;
}
static int copy_user_bh(struct page *to, struct buffer_head *bh,
unsigned blkbits, unsigned long vaddr)
{
void *vfrom, *vto;
if (dax_get_addr(bh, &vfrom, blkbits) < 0)
return -EIO;
vto = kmap_atomic(to);
copy_user_page(vto, vfrom, vaddr, to);
kunmap_atomic(vto);
return 0;
}
static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct address_space *mapping = inode->i_mapping;
sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
unsigned long vaddr = (unsigned long)vmf->virtual_address;
void *addr;
unsigned long pfn;
pgoff_t size;
int error;
i_mmap_lock_read(mapping);
/*
* Check truncate didn't happen while we were allocating a block.
* If it did, this block may or may not be still allocated to the
* file. We can't tell the filesystem to free it because we can't
* take i_mutex here. In the worst case, the file still has blocks
* allocated past the end of the file.
*/
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
error = -EIO;
goto out;
}
error = bdev_direct_access(bh->b_bdev, sector, &addr, &pfn, bh->b_size);
if (error < 0)
goto out;
if (error < PAGE_SIZE) {
error = -EIO;
goto out;
}
if (buffer_unwritten(bh) || buffer_new(bh))
clear_page(addr);
error = vm_insert_mixed(vma, vaddr, pfn);
out:
i_mmap_unlock_read(mapping);
if (bh->b_end_io)
bh->b_end_io(bh, 1);
return error;
}
static int do_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct page *page;
struct buffer_head bh;
unsigned long vaddr = (unsigned long)vmf->virtual_address;
unsigned blkbits = inode->i_blkbits;
sector_t block;
pgoff_t size;
int error;
int major = 0;
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
memset(&bh, 0, sizeof(bh));
block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
bh.b_size = PAGE_SIZE;
repeat:
page = find_get_page(mapping, vmf->pgoff);
if (page) {
if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
page_cache_release(page);
return VM_FAULT_RETRY;
}
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (unlikely(vmf->pgoff >= size)) {
/*
* We have a struct page covering a hole in the file
* from a read fault and we've raced with a truncate
*/
error = -EIO;
goto unlock_page;
}
}
error = get_block(inode, block, &bh, 0);
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO; /* fs corruption? */
if (error)
goto unlock_page;
if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
if (vmf->flags & FAULT_FLAG_WRITE) {
error = get_block(inode, block, &bh, 1);
count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
major = VM_FAULT_MAJOR;
if (!error && (bh.b_size < PAGE_SIZE))
error = -EIO;
if (error)
goto unlock_page;
} else {
return dax_load_hole(mapping, page, vmf);
}
}
if (vmf->cow_page) {
struct page *new_page = vmf->cow_page;
if (buffer_written(&bh))
error = copy_user_bh(new_page, &bh, blkbits, vaddr);
else
clear_user_highpage(new_page, vaddr);
if (error)
goto unlock_page;
vmf->page = page;
if (!page) {
i_mmap_lock_read(mapping);
/* Check we didn't race with truncate */
size = (i_size_read(inode) + PAGE_SIZE - 1) >>
PAGE_SHIFT;
if (vmf->pgoff >= size) {
i_mmap_unlock_read(mapping);
error = -EIO;
goto out;
}
}
return VM_FAULT_LOCKED;
}
/* Check we didn't race with a read fault installing a new page */
if (!page && major)
page = find_lock_page(mapping, vmf->pgoff);
if (page) {
unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
PAGE_CACHE_SIZE, 0);
delete_from_page_cache(page);
unlock_page(page);
page_cache_release(page);
}
error = dax_insert_mapping(inode, &bh, vma, vmf);
out:
if (error == -ENOMEM)
return VM_FAULT_OOM | major;
/* -EBUSY is fine, somebody else faulted on the same PTE */
if ((error < 0) && (error != -EBUSY))
return VM_FAULT_SIGBUS | major;
return VM_FAULT_NOPAGE | major;
unlock_page:
if (page) {
unlock_page(page);
page_cache_release(page);
}
goto out;
}
/**
* dax_fault - handle a page fault on a DAX file
* @vma: The virtual memory area where the fault occurred
* @vmf: The description of the fault
* @get_block: The filesystem method used to translate file offsets to blocks
*
* When a page fault occurs, filesystems may call this helper in their
* fault handler for DAX files.
*/
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
get_block_t get_block)
{
int result;
struct super_block *sb = file_inode(vma->vm_file)->i_sb;
if (vmf->flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(sb);
file_update_time(vma->vm_file);
}
result = do_dax_fault(vma, vmf, get_block);
if (vmf->flags & FAULT_FLAG_WRITE)
sb_end_pagefault(sb);
return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
/**
* dax_zero_page_range - zero a range within a page of a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @length: The number of bytes to zero
* @get_block: The filesystem method used to translate file offsets to blocks
*
* This function can be called by a filesystem when it is zeroing part of a
* page in a DAX file. This is intended for hole-punch operations. If
* you are truncating a file, the helper function dax_truncate_page() may be
* more convenient.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
get_block_t get_block)
{
struct buffer_head bh;
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
int err;
/* Block boundary? Nothing to do */
if (!length)
return 0;
BUG_ON((offset + length) > PAGE_CACHE_SIZE);
memset(&bh, 0, sizeof(bh));
bh.b_size = PAGE_CACHE_SIZE;
err = get_block(inode, index, &bh, 0);
if (err < 0)
return err;
if (buffer_written(&bh)) {
void *addr;
err = dax_get_addr(&bh, &addr, inode->i_blkbits);
if (err < 0)
return err;
memset(addr + offset, 0, length);
}
return 0;
}
EXPORT_SYMBOL_GPL(dax_zero_page_range);
/**
* dax_truncate_page - handle a partial page being truncated in a DAX file
* @inode: The file being truncated
* @from: The file offset that is being truncated to
* @get_block: The filesystem method used to translate file offsets to blocks
*
* Similar to block_truncate_page(), this function can be called by a
* filesystem when it is truncating a DAX file to handle the partial page.
*
* We work in terms of PAGE_CACHE_SIZE here for commonality with
* block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
* took care of disposing of the unnecessary blocks. Even if the filesystem
* block size is smaller than PAGE_SIZE, we have to zero the rest of the page
* since the file might be mmapped.
*/
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
unsigned length = PAGE_CACHE_ALIGN(from) - from;
return dax_zero_page_range(inode, from, length, get_block);
}
EXPORT_SYMBOL_GPL(dax_truncate_page);

View File

@ -985,7 +985,6 @@ const struct address_space_operations exofs_aops = {
.direct_IO = exofs_direct_IO,
/* With these NULL has special meaning or default is not exported */
.get_xip_mem = NULL,
.migratepage = NULL,
.launder_page = NULL,
.is_partially_uptodate = NULL,

View File

@ -42,14 +42,3 @@ config EXT2_FS_SECURITY
If you are not using a security module that requires using
extended attributes for file security labels, say N.
config EXT2_FS_XIP
bool "Ext2 execute in place support"
depends on EXT2_FS && MMU
help
Execute in place can be used on memory-backed block devices. If you
enable this option, you can select to mount block devices which are
capable of this feature without using the page cache.
If you do not use a block device that is capable of using this,
or if unsure, say N.

View File

@ -10,4 +10,3 @@ ext2-y := balloc.o dir.o file.o ialloc.o inode.o \
ext2-$(CONFIG_EXT2_FS_XATTR) += xattr.o xattr_user.o xattr_trusted.o
ext2-$(CONFIG_EXT2_FS_POSIX_ACL) += acl.o
ext2-$(CONFIG_EXT2_FS_SECURITY) += xattr_security.o
ext2-$(CONFIG_EXT2_FS_XIP) += xip.o

View File

@ -380,10 +380,15 @@ struct ext2_inode {
#define EXT2_MOUNT_NO_UID32 0x000200 /* Disable 32-bit UIDs */
#define EXT2_MOUNT_XATTR_USER 0x004000 /* Extended user attributes */
#define EXT2_MOUNT_POSIX_ACL 0x008000 /* POSIX Access Control Lists */
#define EXT2_MOUNT_XIP 0x010000 /* Execute in place */
#define EXT2_MOUNT_XIP 0x010000 /* Obsolete, use DAX */
#define EXT2_MOUNT_USRQUOTA 0x020000 /* user quota */
#define EXT2_MOUNT_GRPQUOTA 0x040000 /* group quota */
#define EXT2_MOUNT_RESERVATION 0x080000 /* Preallocation */
#ifdef CONFIG_FS_DAX
#define EXT2_MOUNT_DAX 0x100000 /* Direct Access */
#else
#define EXT2_MOUNT_DAX 0
#endif
#define clear_opt(o, opt) o &= ~EXT2_MOUNT_##opt
@ -788,11 +793,10 @@ extern int ext2_fsync(struct file *file, loff_t start, loff_t end,
int datasync);
extern const struct inode_operations ext2_file_inode_operations;
extern const struct file_operations ext2_file_operations;
extern const struct file_operations ext2_xip_file_operations;
extern const struct file_operations ext2_dax_file_operations;
/* inode.c */
extern const struct address_space_operations ext2_aops;
extern const struct address_space_operations ext2_aops_xip;
extern const struct address_space_operations ext2_nobh_aops;
/* namei.c */

View File

@ -25,6 +25,36 @@
#include "xattr.h"
#include "acl.h"
#ifdef CONFIG_FS_DAX
static int ext2_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
return dax_fault(vma, vmf, ext2_get_block);
}
static int ext2_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
return dax_mkwrite(vma, vmf, ext2_get_block);
}
static const struct vm_operations_struct ext2_dax_vm_ops = {
.fault = ext2_dax_fault,
.page_mkwrite = ext2_dax_mkwrite,
};
static int ext2_file_mmap(struct file *file, struct vm_area_struct *vma)
{
if (!IS_DAX(file_inode(file)))
return generic_file_mmap(file, vma);
file_accessed(file);
vma->vm_ops = &ext2_dax_vm_ops;
vma->vm_flags |= VM_MIXEDMAP;
return 0;
}
#else
#define ext2_file_mmap generic_file_mmap
#endif
/*
* Called when filp is released. This happens when all file descriptors
* for a single struct file are closed. Note that different open() calls
@ -70,7 +100,7 @@ const struct file_operations ext2_file_operations = {
#ifdef CONFIG_COMPAT
.compat_ioctl = ext2_compat_ioctl,
#endif
.mmap = generic_file_mmap,
.mmap = ext2_file_mmap,
.open = dquot_file_open,
.release = ext2_release_file,
.fsync = ext2_fsync,
@ -78,16 +108,18 @@ const struct file_operations ext2_file_operations = {
.splice_write = iter_file_splice_write,
};
#ifdef CONFIG_EXT2_FS_XIP
const struct file_operations ext2_xip_file_operations = {
#ifdef CONFIG_FS_DAX
const struct file_operations ext2_dax_file_operations = {
.llseek = generic_file_llseek,
.read = xip_file_read,
.write = xip_file_write,
.read = new_sync_read,
.write = new_sync_write,
.read_iter = generic_file_read_iter,
.write_iter = generic_file_write_iter,
.unlocked_ioctl = ext2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ext2_compat_ioctl,
#endif
.mmap = xip_file_mmap,
.mmap = ext2_file_mmap,
.open = dquot_file_open,
.release = ext2_release_file,
.fsync = ext2_fsync,

View File

@ -34,7 +34,6 @@
#include <linux/aio.h>
#include "ext2.h"
#include "acl.h"
#include "xip.h"
#include "xattr.h"
static int __ext2_write_inode(struct inode *inode, int do_sync);
@ -731,12 +730,14 @@ static int ext2_get_blocks(struct inode *inode,
goto cleanup;
}
if (ext2_use_xip(inode->i_sb)) {
if (IS_DAX(inode)) {
/*
* we need to clear the block
* block must be initialised before we put it in the tree
* so that it's not found by another thread before it's
* initialised
*/
err = ext2_clear_xip_target (inode,
le32_to_cpu(chain[depth-1].key));
err = dax_clear_blocks(inode, le32_to_cpu(chain[depth-1].key),
1 << inode->i_blkbits);
if (err) {
mutex_unlock(&ei->truncate_mutex);
goto cleanup;
@ -859,7 +860,12 @@ ext2_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter,
size_t count = iov_iter_count(iter);
ssize_t ret;
ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, ext2_get_block);
if (IS_DAX(inode))
ret = dax_do_io(rw, iocb, inode, iter, offset, ext2_get_block,
NULL, DIO_LOCKING);
else
ret = blockdev_direct_IO(rw, iocb, inode, iter, offset,
ext2_get_block);
if (ret < 0 && (rw & WRITE))
ext2_write_failed(mapping, offset + count);
return ret;
@ -885,11 +891,6 @@ const struct address_space_operations ext2_aops = {
.error_remove_page = generic_error_remove_page,
};
const struct address_space_operations ext2_aops_xip = {
.bmap = ext2_bmap,
.get_xip_mem = ext2_get_xip_mem,
};
const struct address_space_operations ext2_nobh_aops = {
.readpage = ext2_readpage,
.readpages = ext2_readpages,
@ -1201,8 +1202,8 @@ static int ext2_setsize(struct inode *inode, loff_t newsize)
inode_dio_wait(inode);
if (mapping_is_xip(inode->i_mapping))
error = xip_truncate_page(inode->i_mapping, newsize);
if (IS_DAX(inode))
error = dax_truncate_page(inode, newsize, ext2_get_block);
else if (test_opt(inode->i_sb, NOBH))
error = nobh_truncate_page(inode->i_mapping,
newsize, ext2_get_block);
@ -1273,7 +1274,8 @@ void ext2_set_inode_flags(struct inode *inode)
{
unsigned int flags = EXT2_I(inode)->i_flags;
inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
S_DIRSYNC | S_DAX);
if (flags & EXT2_SYNC_FL)
inode->i_flags |= S_SYNC;
if (flags & EXT2_APPEND_FL)
@ -1284,6 +1286,8 @@ void ext2_set_inode_flags(struct inode *inode)
inode->i_flags |= S_NOATIME;
if (flags & EXT2_DIRSYNC_FL)
inode->i_flags |= S_DIRSYNC;
if (test_opt(inode->i_sb, DAX))
inode->i_flags |= S_DAX;
}
/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
@ -1384,9 +1388,9 @@ struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ext2_file_inode_operations;
if (ext2_use_xip(inode->i_sb)) {
inode->i_mapping->a_ops = &ext2_aops_xip;
inode->i_fop = &ext2_xip_file_operations;
if (test_opt(inode->i_sb, DAX)) {
inode->i_mapping->a_ops = &ext2_aops;
inode->i_fop = &ext2_dax_file_operations;
} else if (test_opt(inode->i_sb, NOBH)) {
inode->i_mapping->a_ops = &ext2_nobh_aops;
inode->i_fop = &ext2_file_operations;

View File

@ -35,7 +35,6 @@
#include "ext2.h"
#include "xattr.h"
#include "acl.h"
#include "xip.h"
static inline int ext2_add_nondir(struct dentry *dentry, struct inode *inode)
{
@ -105,9 +104,9 @@ static int ext2_create (struct inode * dir, struct dentry * dentry, umode_t mode
return PTR_ERR(inode);
inode->i_op = &ext2_file_inode_operations;
if (ext2_use_xip(inode->i_sb)) {
inode->i_mapping->a_ops = &ext2_aops_xip;
inode->i_fop = &ext2_xip_file_operations;
if (test_opt(inode->i_sb, DAX)) {
inode->i_mapping->a_ops = &ext2_aops;
inode->i_fop = &ext2_dax_file_operations;
} else if (test_opt(inode->i_sb, NOBH)) {
inode->i_mapping->a_ops = &ext2_nobh_aops;
inode->i_fop = &ext2_file_operations;
@ -126,9 +125,9 @@ static int ext2_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
return PTR_ERR(inode);
inode->i_op = &ext2_file_inode_operations;
if (ext2_use_xip(inode->i_sb)) {
inode->i_mapping->a_ops = &ext2_aops_xip;
inode->i_fop = &ext2_xip_file_operations;
if (test_opt(inode->i_sb, DAX)) {
inode->i_mapping->a_ops = &ext2_aops;
inode->i_fop = &ext2_dax_file_operations;
} else if (test_opt(inode->i_sb, NOBH)) {
inode->i_mapping->a_ops = &ext2_nobh_aops;
inode->i_fop = &ext2_file_operations;

View File

@ -35,7 +35,6 @@
#include "ext2.h"
#include "xattr.h"
#include "acl.h"
#include "xip.h"
static void ext2_sync_super(struct super_block *sb,
struct ext2_super_block *es, int wait);
@ -292,9 +291,11 @@ static int ext2_show_options(struct seq_file *seq, struct dentry *root)
seq_puts(seq, ",grpquota");
#endif
#if defined(CONFIG_EXT2_FS_XIP)
#ifdef CONFIG_FS_DAX
if (sbi->s_mount_opt & EXT2_MOUNT_XIP)
seq_puts(seq, ",xip");
if (sbi->s_mount_opt & EXT2_MOUNT_DAX)
seq_puts(seq, ",dax");
#endif
if (!test_opt(sb, RESERVATION))
@ -403,7 +404,7 @@ enum {
Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic,
Opt_err_ro, Opt_nouid32, Opt_nocheck, Opt_debug,
Opt_oldalloc, Opt_orlov, Opt_nobh, Opt_user_xattr, Opt_nouser_xattr,
Opt_acl, Opt_noacl, Opt_xip, Opt_ignore, Opt_err, Opt_quota,
Opt_acl, Opt_noacl, Opt_xip, Opt_dax, Opt_ignore, Opt_err, Opt_quota,
Opt_usrquota, Opt_grpquota, Opt_reservation, Opt_noreservation
};
@ -432,6 +433,7 @@ static const match_table_t tokens = {
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_xip, "xip"},
{Opt_dax, "dax"},
{Opt_grpquota, "grpquota"},
{Opt_ignore, "noquota"},
{Opt_quota, "quota"},
@ -559,10 +561,14 @@ static int parse_options(char *options, struct super_block *sb)
break;
#endif
case Opt_xip:
#ifdef CONFIG_EXT2_FS_XIP
set_opt (sbi->s_mount_opt, XIP);
ext2_msg(sb, KERN_INFO, "use dax instead of xip");
set_opt(sbi->s_mount_opt, XIP);
/* Fall through */
case Opt_dax:
#ifdef CONFIG_FS_DAX
set_opt(sbi->s_mount_opt, DAX);
#else
ext2_msg(sb, KERN_INFO, "xip option not supported");
ext2_msg(sb, KERN_INFO, "dax option not supported");
#endif
break;
@ -877,9 +883,6 @@ static int ext2_fill_super(struct super_block *sb, void *data, int silent)
((EXT2_SB(sb)->s_mount_opt & EXT2_MOUNT_POSIX_ACL) ?
MS_POSIXACL : 0);
ext2_xip_verify_sb(sb); /* see if bdev supports xip, unset
EXT2_MOUNT_XIP if not */
if (le32_to_cpu(es->s_rev_level) == EXT2_GOOD_OLD_REV &&
(EXT2_HAS_COMPAT_FEATURE(sb, ~0U) ||
EXT2_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
@ -909,11 +912,17 @@ static int ext2_fill_super(struct super_block *sb, void *data, int silent)
blocksize = BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
if (ext2_use_xip(sb) && blocksize != PAGE_SIZE) {
if (!silent)
if (sbi->s_mount_opt & EXT2_MOUNT_DAX) {
if (blocksize != PAGE_SIZE) {
ext2_msg(sb, KERN_ERR,
"error: unsupported blocksize for xip");
goto failed_mount;
"error: unsupported blocksize for dax");
goto failed_mount;
}
if (!sb->s_bdev->bd_disk->fops->direct_access) {
ext2_msg(sb, KERN_ERR,
"error: device does not support dax");
goto failed_mount;
}
}
/* If the blocksize doesn't match, re-read the thing.. */
@ -1259,7 +1268,6 @@ static int ext2_remount (struct super_block * sb, int * flags, char * data)
{
struct ext2_sb_info * sbi = EXT2_SB(sb);
struct ext2_super_block * es;
unsigned long old_mount_opt = sbi->s_mount_opt;
struct ext2_mount_options old_opts;
unsigned long old_sb_flags;
int err;
@ -1284,22 +1292,11 @@ static int ext2_remount (struct super_block * sb, int * flags, char * data)
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
((sbi->s_mount_opt & EXT2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
ext2_xip_verify_sb(sb); /* see if bdev supports xip, unset
EXT2_MOUNT_XIP if not */
if ((ext2_use_xip(sb)) && (sb->s_blocksize != PAGE_SIZE)) {
ext2_msg(sb, KERN_WARNING,
"warning: unsupported blocksize for xip");
err = -EINVAL;
goto restore_opts;
}
es = sbi->s_es;
if ((sbi->s_mount_opt ^ old_mount_opt) & EXT2_MOUNT_XIP) {
if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT2_MOUNT_DAX) {
ext2_msg(sb, KERN_WARNING, "warning: refusing change of "
"xip flag with busy inodes while remounting");
sbi->s_mount_opt &= ~EXT2_MOUNT_XIP;
sbi->s_mount_opt |= old_mount_opt & EXT2_MOUNT_XIP;
"dax flag with busy inodes while remounting");
sbi->s_mount_opt ^= EXT2_MOUNT_DAX;
}
if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
spin_unlock(&sbi->s_lock);

View File

@ -1,86 +0,0 @@
/*
* linux/fs/ext2/xip.c
*
* Copyright (C) 2005 IBM Corporation
* Author: Carsten Otte (cotte@de.ibm.com)
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include "ext2.h"
#include "xip.h"
static inline long __inode_direct_access(struct inode *inode, sector_t block,
void **kaddr, unsigned long *pfn, long size)
{
struct block_device *bdev = inode->i_sb->s_bdev;
sector_t sector = block * (PAGE_SIZE / 512);
return bdev_direct_access(bdev, sector, kaddr, pfn, size);
}
static inline int
__ext2_get_block(struct inode *inode, pgoff_t pgoff, int create,
sector_t *result)
{
struct buffer_head tmp;
int rc;
memset(&tmp, 0, sizeof(struct buffer_head));
tmp.b_size = 1 << inode->i_blkbits;
rc = ext2_get_block(inode, pgoff, &tmp, create);
*result = tmp.b_blocknr;
/* did we get a sparse block (hole in the file)? */
if (!tmp.b_blocknr && !rc) {
BUG_ON(create);
rc = -ENODATA;
}
return rc;
}
int
ext2_clear_xip_target(struct inode *inode, sector_t block)
{
void *kaddr;
unsigned long pfn;
long size;
size = __inode_direct_access(inode, block, &kaddr, &pfn, PAGE_SIZE);
if (size < 0)
return size;
clear_page(kaddr);
return 0;
}
void ext2_xip_verify_sb(struct super_block *sb)
{
struct ext2_sb_info *sbi = EXT2_SB(sb);
if ((sbi->s_mount_opt & EXT2_MOUNT_XIP) &&
!sb->s_bdev->bd_disk->fops->direct_access) {
sbi->s_mount_opt &= (~EXT2_MOUNT_XIP);
ext2_msg(sb, KERN_WARNING,
"warning: ignoring xip option - "
"not supported by bdev");
}
}
int ext2_get_xip_mem(struct address_space *mapping, pgoff_t pgoff, int create,
void **kmem, unsigned long *pfn)
{
long rc;
sector_t block;
/* first, retrieve the sector number */
rc = __ext2_get_block(mapping->host, pgoff, create, &block);
if (rc)
return rc;
/* retrieve address of the target data */
rc = __inode_direct_access(mapping->host, block, kmem, pfn, PAGE_SIZE);
return (rc < 0) ? rc : 0;
}

View File

@ -1,26 +0,0 @@
/*
* linux/fs/ext2/xip.h
*
* Copyright (C) 2005 IBM Corporation
* Author: Carsten Otte (cotte@de.ibm.com)
*/
#ifdef CONFIG_EXT2_FS_XIP
extern void ext2_xip_verify_sb (struct super_block *);
extern int ext2_clear_xip_target (struct inode *, sector_t);
static inline int ext2_use_xip (struct super_block *sb)
{
struct ext2_sb_info *sbi = EXT2_SB(sb);
return (sbi->s_mount_opt & EXT2_MOUNT_XIP);
}
int ext2_get_xip_mem(struct address_space *, pgoff_t, int,
void **, unsigned long *);
#define mapping_is_xip(map) unlikely(map->a_ops->get_xip_mem)
#else
#define mapping_is_xip(map) 0
#define ext2_xip_verify_sb(sb) do { } while (0)
#define ext2_use_xip(sb) 0
#define ext2_clear_xip_target(inode, chain) 0
#define ext2_get_xip_mem NULL
#endif

View File

@ -965,6 +965,11 @@ struct ext4_inode_info {
#define EXT4_MOUNT_ERRORS_MASK 0x00070
#define EXT4_MOUNT_MINIX_DF 0x00080 /* Mimics the Minix statfs */
#define EXT4_MOUNT_NOLOAD 0x00100 /* Don't use existing journal*/
#ifdef CONFIG_FS_DAX
#define EXT4_MOUNT_DAX 0x00200 /* Direct Access */
#else
#define EXT4_MOUNT_DAX 0
#endif
#define EXT4_MOUNT_DATA_FLAGS 0x00C00 /* Mode for data writes: */
#define EXT4_MOUNT_JOURNAL_DATA 0x00400 /* Write data to journal */
#define EXT4_MOUNT_ORDERED_DATA 0x00800 /* Flush data before commit */
@ -2578,6 +2583,7 @@ extern const struct file_operations ext4_dir_operations;
/* file.c */
extern const struct inode_operations ext4_file_inode_operations;
extern const struct file_operations ext4_file_operations;
extern const struct file_operations ext4_dax_file_operations;
extern loff_t ext4_llseek(struct file *file, loff_t offset, int origin);
/* inline.c */

View File

@ -95,7 +95,7 @@ ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
struct inode *inode = file_inode(iocb->ki_filp);
struct mutex *aio_mutex = NULL;
struct blk_plug plug;
int o_direct = file->f_flags & O_DIRECT;
int o_direct = io_is_direct(file);
int overwrite = 0;
size_t length = iov_iter_count(from);
ssize_t ret;
@ -191,6 +191,26 @@ ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
return ret;
}
#ifdef CONFIG_FS_DAX
static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
return dax_fault(vma, vmf, ext4_get_block);
/* Is this the right get_block? */
}
static int ext4_dax_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
return dax_mkwrite(vma, vmf, ext4_get_block);
}
static const struct vm_operations_struct ext4_dax_vm_ops = {
.fault = ext4_dax_fault,
.page_mkwrite = ext4_dax_mkwrite,
};
#else
#define ext4_dax_vm_ops ext4_file_vm_ops
#endif
static const struct vm_operations_struct ext4_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
@ -200,7 +220,12 @@ static const struct vm_operations_struct ext4_file_vm_ops = {
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
{
file_accessed(file);
vma->vm_ops = &ext4_file_vm_ops;
if (IS_DAX(file_inode(file))) {
vma->vm_ops = &ext4_dax_vm_ops;
vma->vm_flags |= VM_MIXEDMAP;
} else {
vma->vm_ops = &ext4_file_vm_ops;
}
return 0;
}
@ -599,6 +624,26 @@ const struct file_operations ext4_file_operations = {
.fallocate = ext4_fallocate,
};
#ifdef CONFIG_FS_DAX
const struct file_operations ext4_dax_file_operations = {
.llseek = ext4_llseek,
.read = new_sync_read,
.write = new_sync_write,
.read_iter = generic_file_read_iter,
.write_iter = ext4_file_write_iter,
.unlocked_ioctl = ext4_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ext4_compat_ioctl,
#endif
.mmap = ext4_file_mmap,
.open = ext4_file_open,
.release = ext4_release_file,
.fsync = ext4_sync_file,
/* Splice not yet supported with DAX */
.fallocate = ext4_fallocate,
};
#endif
const struct inode_operations ext4_file_inode_operations = {
.setattr = ext4_setattr,
.getattr = ext4_getattr,

View File

@ -689,14 +689,22 @@ ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
inode_dio_done(inode);
goto locked;
}
ret = __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev, iter, offset,
ext4_get_block, NULL, NULL, 0);
if (IS_DAX(inode))
ret = dax_do_io(rw, iocb, inode, iter, offset,
ext4_get_block, NULL, 0);
else
ret = __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev, iter, offset,
ext4_get_block, NULL, NULL, 0);
inode_dio_done(inode);
} else {
locked:
ret = blockdev_direct_IO(rw, iocb, inode, iter,
offset, ext4_get_block);
if (IS_DAX(inode))
ret = dax_do_io(rw, iocb, inode, iter, offset,
ext4_get_block, NULL, DIO_LOCKING);
else
ret = blockdev_direct_IO(rw, iocb, inode, iter,
offset, ext4_get_block);
if (unlikely((rw & WRITE) && ret < 0)) {
loff_t isize = i_size_read(inode);

View File

@ -657,6 +657,18 @@ int ext4_map_blocks(handle_t *handle, struct inode *inode,
return retval;
}
static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
{
struct inode *inode = bh->b_assoc_map->host;
/* XXX: breaks on 32-bit > 16GB. Is that even supported? */
loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
int err;
if (!uptodate)
return;
WARN_ON(!buffer_unwritten(bh));
err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
}
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
@ -694,6 +706,11 @@ static int _ext4_get_block(struct inode *inode, sector_t iblock,
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
bh->b_assoc_map = inode->i_mapping;
bh->b_private = (void *)(unsigned long)iblock;
bh->b_end_io = ext4_end_io_unwritten;
}
if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
set_buffer_defer_completion(bh);
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
@ -3010,13 +3027,14 @@ static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
get_block_func = ext4_get_block_write;
dio_flags = DIO_LOCKING;
}
ret = __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev, iter,
offset,
get_block_func,
ext4_end_io_dio,
NULL,
dio_flags);
if (IS_DAX(inode))
ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
ext4_end_io_dio, dio_flags);
else
ret = __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev, iter, offset,
get_block_func,
ext4_end_io_dio, NULL, dio_flags);
/*
* Put our reference to io_end. This can free the io_end structure e.g.
@ -3180,19 +3198,12 @@ void ext4_set_aops(struct inode *inode)
inode->i_mapping->a_ops = &ext4_aops;
}
/*
* ext4_block_zero_page_range() zeros out a mapping of length 'length'
* starting from file offset 'from'. The range to be zero'd must
* be contained with in one block. If the specified range exceeds
* the end of the block it will be shortened to end of the block
* that cooresponds to 'from'
*/
static int ext4_block_zero_page_range(handle_t *handle,
static int __ext4_block_zero_page_range(handle_t *handle,
struct address_space *mapping, loff_t from, loff_t length)
{
ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned blocksize, max, pos;
unsigned blocksize, pos;
ext4_lblk_t iblock;
struct inode *inode = mapping->host;
struct buffer_head *bh;
@ -3205,14 +3216,6 @@ static int ext4_block_zero_page_range(handle_t *handle,
return -ENOMEM;
blocksize = inode->i_sb->s_blocksize;
max = blocksize - (offset & (blocksize - 1));
/*
* correct length if it does not fall between
* 'from' and the end of the block
*/
if (length > max || length < 0)
length = max;
iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
@ -3277,6 +3280,33 @@ static int ext4_block_zero_page_range(handle_t *handle,
return err;
}
/*
* ext4_block_zero_page_range() zeros out a mapping of length 'length'
* starting from file offset 'from'. The range to be zero'd must
* be contained with in one block. If the specified range exceeds
* the end of the block it will be shortened to end of the block
* that cooresponds to 'from'
*/
static int ext4_block_zero_page_range(handle_t *handle,
struct address_space *mapping, loff_t from, loff_t length)
{
struct inode *inode = mapping->host;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned blocksize = inode->i_sb->s_blocksize;
unsigned max = blocksize - (offset & (blocksize - 1));
/*
* correct length if it does not fall between
* 'from' and the end of the block
*/
if (length > max || length < 0)
length = max;
if (IS_DAX(inode))
return dax_zero_page_range(inode, from, length, ext4_get_block);
return __ext4_block_zero_page_range(handle, mapping, from, length);
}
/*
* ext4_block_truncate_page() zeroes out a mapping from file offset `from'
* up to the end of the block which corresponds to `from'.
@ -3798,8 +3828,10 @@ void ext4_set_inode_flags(struct inode *inode)
new_fl |= S_NOATIME;
if (flags & EXT4_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
if (test_opt(inode->i_sb, DAX))
new_fl |= S_DAX;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
}
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
@ -4052,7 +4084,10 @@ struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
if (test_opt(inode->i_sb, DAX))
inode->i_fop = &ext4_dax_file_operations;
else
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ext4_dir_inode_operations;
@ -4534,7 +4569,7 @@ int ext4_setattr(struct dentry *dentry, struct iattr *attr)
* Truncate pagecache after we've waited for commit
* in data=journal mode to make pages freeable.
*/
truncate_pagecache(inode, inode->i_size);
truncate_pagecache(inode, inode->i_size);
}
/*
* We want to call ext4_truncate() even if attr->ia_size ==

View File

@ -2235,7 +2235,10 @@ static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode,
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
if (test_opt(inode->i_sb, DAX))
inode->i_fop = &ext4_dax_file_operations;
else
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
err = ext4_add_nondir(handle, dentry, inode);
if (!err && IS_DIRSYNC(dir))
@ -2299,7 +2302,10 @@ static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
err = PTR_ERR(inode);
if (!IS_ERR(inode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
if (test_opt(inode->i_sb, DAX))
inode->i_fop = &ext4_dax_file_operations;
else
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
d_tmpfile(dentry, inode);
err = ext4_orphan_add(handle, inode);

View File

@ -1124,7 +1124,7 @@ enum {
Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
Opt_usrquota, Opt_grpquota, Opt_i_version,
Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
Opt_inode_readahead_blks, Opt_journal_ioprio,
@ -1187,6 +1187,7 @@ static const match_table_t tokens = {
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_i_version, "i_version"},
{Opt_dax, "dax"},
{Opt_stripe, "stripe=%u"},
{Opt_delalloc, "delalloc"},
{Opt_nodelalloc, "nodelalloc"},
@ -1371,6 +1372,7 @@ static const struct mount_opts {
{Opt_min_batch_time, 0, MOPT_GTE0},
{Opt_inode_readahead_blks, 0, MOPT_GTE0},
{Opt_init_itable, 0, MOPT_GTE0},
{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
{Opt_stripe, 0, MOPT_GTE0},
{Opt_resuid, 0, MOPT_GTE0},
{Opt_resgid, 0, MOPT_GTE0},
@ -1606,6 +1608,11 @@ static int handle_mount_opt(struct super_block *sb, char *opt, int token,
return -1;
}
sbi->s_jquota_fmt = m->mount_opt;
#endif
#ifndef CONFIG_FS_DAX
} else if (token == Opt_dax) {
ext4_msg(sb, KERN_INFO, "dax option not supported");
return -1;
#endif
} else {
if (!args->from)
@ -3589,6 +3596,11 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
"both data=journal and dioread_nolock");
goto failed_mount;
}
if (test_opt(sb, DAX)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dax");
goto failed_mount;
}
if (test_opt(sb, DELALLOC))
clear_opt(sb, DELALLOC);
}
@ -3652,6 +3664,19 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent)
goto failed_mount;
}
if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
if (blocksize != PAGE_SIZE) {
ext4_msg(sb, KERN_ERR,
"error: unsupported blocksize for dax");
goto failed_mount;
}
if (!sb->s_bdev->bd_disk->fops->direct_access) {
ext4_msg(sb, KERN_ERR,
"error: device does not support dax");
goto failed_mount;
}
}
if (sb->s_blocksize != blocksize) {
/* Validate the filesystem blocksize */
if (!sb_set_blocksize(sb, blocksize)) {
@ -4869,6 +4894,18 @@ static int ext4_remount(struct super_block *sb, int *flags, char *data)
err = -EINVAL;
goto restore_opts;
}
if (test_opt(sb, DAX)) {
ext4_msg(sb, KERN_ERR, "can't mount with "
"both data=journal and dax");
err = -EINVAL;
goto restore_opts;
}
}
if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
"dax flag with busy inodes while remounting");
sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
}
if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)

View File

@ -28,6 +28,7 @@
#include <linux/pipe_fs_i.h>
#include <linux/mpage.h>
#include <linux/quotaops.h>
#include <linux/blkdev.h>
#include <cluster/masklog.h>
@ -47,6 +48,9 @@
#include "ocfs2_trace.h"
#include "buffer_head_io.h"
#include "dir.h"
#include "namei.h"
#include "sysfile.h"
static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
@ -506,18 +510,21 @@ static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
*
* called like this: dio->get_blocks(dio->inode, fs_startblk,
* fs_count, map_bh, dio->rw == WRITE);
*
* Note that we never bother to allocate blocks here, and thus ignore the
* create argument.
*/
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
int ret;
u32 cpos = 0;
int alloc_locked = 0;
u64 p_blkno, inode_blocks, contig_blocks;
unsigned int ext_flags;
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
unsigned long len = bh_result->b_size;
unsigned int clusters_to_alloc = 0;
cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
/* This function won't even be called if the request isn't all
* nicely aligned and of the right size, so there's no need
@ -539,6 +546,40 @@ static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
/* We should already CoW the refcounted extent in case of create. */
BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
/* allocate blocks if no p_blkno is found, and create == 1 */
if (!p_blkno && create) {
ret = ocfs2_inode_lock(inode, NULL, 1);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
alloc_locked = 1;
/* fill hole, allocate blocks can't be larger than the size
* of the hole */
clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
if (clusters_to_alloc > contig_blocks)
clusters_to_alloc = contig_blocks;
/* allocate extent and insert them into the extent tree */
ret = ocfs2_extend_allocation(inode, cpos,
clusters_to_alloc, 0);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
&contig_blocks, &ext_flags);
if (ret < 0) {
mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
(unsigned long long)iblock);
ret = -EIO;
goto bail;
}
}
/*
* get_more_blocks() expects us to describe a hole by clearing
* the mapped bit on bh_result().
@ -556,6 +597,8 @@ static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
contig_blocks = max_blocks;
bh_result->b_size = contig_blocks << blocksize_bits;
bail:
if (alloc_locked)
ocfs2_inode_unlock(inode, 1);
return ret;
}
@ -597,6 +640,184 @@ static int ocfs2_releasepage(struct page *page, gfp_t wait)
return try_to_free_buffers(page);
}
static int ocfs2_is_overwrite(struct ocfs2_super *osb,
struct inode *inode, loff_t offset)
{
int ret = 0;
u32 v_cpos = 0;
u32 p_cpos = 0;
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
&num_clusters, &ext_flags);
if (ret < 0) {
mlog_errno(ret);
return ret;
}
if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
return 1;
return 0;
}
static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset)
{
ssize_t ret = 0;
ssize_t written = 0;
bool orphaned = false;
int is_overwrite = 0;
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file)->i_mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct buffer_head *di_bh = NULL;
size_t count = iter->count;
journal_t *journal = osb->journal->j_journal;
u32 zero_len;
int cluster_align;
loff_t final_size = offset + count;
int append_write = offset >= i_size_read(inode) ? 1 : 0;
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
{
u64 o = offset;
zero_len = do_div(o, 1 << osb->s_clustersize_bits);
cluster_align = !zero_len;
}
/*
* when final_size > inode->i_size, inode->i_size will be
* updated after direct write, so add the inode to orphan
* dir first.
*/
if (final_size > i_size_read(inode)) {
ret = ocfs2_add_inode_to_orphan(osb, inode);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
orphaned = true;
}
if (append_write) {
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret < 0) {
mlog_errno(ret);
goto clean_orphan;
}
if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
ret = ocfs2_zero_extend(inode, di_bh, offset);
else
ret = ocfs2_extend_no_holes(inode, di_bh, offset,
offset);
if (ret < 0) {
mlog_errno(ret);
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
goto clean_orphan;
}
is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
if (is_overwrite < 0) {
mlog_errno(is_overwrite);
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
goto clean_orphan;
}
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
di_bh = NULL;
}
written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
iter, offset,
ocfs2_direct_IO_get_blocks,
ocfs2_dio_end_io, NULL, 0);
if (unlikely(written < 0)) {
loff_t i_size = i_size_read(inode);
if (offset + count > i_size) {
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret < 0) {
mlog_errno(ret);
goto clean_orphan;
}
if (i_size == i_size_read(inode)) {
ret = ocfs2_truncate_file(inode, di_bh,
i_size);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
goto clean_orphan;
}
}
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
ret = jbd2_journal_force_commit(journal);
if (ret < 0)
mlog_errno(ret);
}
} else if (written < 0 && append_write && !is_overwrite &&
!cluster_align) {
u32 p_cpos = 0;
u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
&num_clusters, &ext_flags);
if (ret < 0) {
mlog_errno(ret);
goto clean_orphan;
}
BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
ret = blkdev_issue_zeroout(osb->sb->s_bdev,
p_cpos << (osb->s_clustersize_bits - 9),
zero_len >> 9, GFP_KERNEL, false);
if (ret < 0)
mlog_errno(ret);
}
clean_orphan:
if (orphaned) {
int tmp_ret;
int update_isize = written > 0 ? 1 : 0;
loff_t end = update_isize ? offset + written : 0;
tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
update_isize, end);
if (tmp_ret < 0) {
ret = tmp_ret;
goto out;
}
tmp_ret = jbd2_journal_force_commit(journal);
if (tmp_ret < 0) {
ret = tmp_ret;
mlog_errno(tmp_ret);
}
}
out:
if (ret >= 0)
ret = written;
return ret;
}
static ssize_t ocfs2_direct_IO(int rw,
struct kiocb *iocb,
struct iov_iter *iter,
@ -604,6 +825,9 @@ static ssize_t ocfs2_direct_IO(int rw,
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file)->i_mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
/*
* Fallback to buffered I/O if we see an inode without
@ -612,14 +836,20 @@ static ssize_t ocfs2_direct_IO(int rw,
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
return 0;
/* Fallback to buffered I/O if we are appending. */
if (i_size_read(inode) <= offset)
/* Fallback to buffered I/O if we are appending and
* concurrent O_DIRECT writes are allowed.
*/
if (i_size_read(inode) <= offset && !full_coherency)
return 0;
return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
if (rw == READ)
return __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev,
iter, offset,
ocfs2_direct_IO_get_blocks,
ocfs2_dio_end_io, NULL, 0);
else
return ocfs2_direct_IO_write(iocb, iter, offset);
}
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,

View File

@ -295,7 +295,7 @@ int ocfs2_update_inode_atime(struct inode *inode,
return ret;
}
static int ocfs2_set_inode_size(handle_t *handle,
int ocfs2_set_inode_size(handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size)
@ -441,7 +441,7 @@ static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
return status;
}
static int ocfs2_truncate_file(struct inode *inode,
int ocfs2_truncate_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
@ -709,6 +709,13 @@ static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
return status;
}
int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
u32 clusters_to_add, int mark_unwritten)
{
return __ocfs2_extend_allocation(inode, logical_start,
clusters_to_add, mark_unwritten);
}
/*
* While a write will already be ordering the data, a truncate will not.
* Thus, we need to explicitly order the zeroed pages.
@ -2109,6 +2116,9 @@ static int ocfs2_prepare_inode_for_write(struct file *file,
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = dentry->d_inode;
loff_t saved_pos = 0, end;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
/*
* We start with a read level meta lock and only jump to an ex
@ -2197,7 +2207,16 @@ static int ocfs2_prepare_inode_for_write(struct file *file,
* one node could wind up truncating another
* nodes writes.
*/
if (end > i_size_read(inode)) {
if (end > i_size_read(inode) && !full_coherency) {
*direct_io = 0;
break;
}
/*
* Fallback to old way if the feature bit is not set.
*/
if (end > i_size_read(inode) &&
!ocfs2_supports_append_dio(osb)) {
*direct_io = 0;
break;
}
@ -2210,7 +2229,13 @@ static int ocfs2_prepare_inode_for_write(struct file *file,
*/
ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
if (ret == 1) {
*direct_io = 0;
/*
* Fallback to old way if the feature bit is not set.
* Otherwise try dio first and then complete the rest
* request through buffer io.
*/
if (!ocfs2_supports_append_dio(osb))
*direct_io = 0;
ret = 0;
} else if (ret < 0)
mlog_errno(ret);
@ -2243,6 +2268,7 @@ static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
u32 old_clusters;
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = file->f_mapping;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
@ -2357,11 +2383,51 @@ static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
iov_iter_truncate(from, count);
if (direct_io) {
loff_t endbyte;
ssize_t written_buffered;
written = generic_file_direct_write(iocb, from, *ppos);
if (written < 0) {
if (written < 0 || written == count) {
ret = written;
goto out_dio;
}
/*
* for completing the rest of the request.
*/
*ppos += written;
count -= written;
written_buffered = generic_perform_write(file, from, *ppos);
/*
* If generic_file_buffered_write() returned a synchronous error
* then we want to return the number of bytes which were
* direct-written, or the error code if that was zero. Note
* that this differs from normal direct-io semantics, which
* will return -EFOO even if some bytes were written.
*/
if (written_buffered < 0) {
ret = written_buffered;
goto out_dio;
}
iocb->ki_pos = *ppos + written_buffered;
/* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics.
*/
endbyte = *ppos + written_buffered - 1;
ret = filemap_write_and_wait_range(file->f_mapping, *ppos,
endbyte);
if (ret == 0) {
written += written_buffered;
invalidate_mapping_pages(mapping,
*ppos >> PAGE_CACHE_SHIFT,
endbyte >> PAGE_CACHE_SHIFT);
} else {
/*
* We don't know how much we wrote, so just return
* the number of bytes which were direct-written
*/
}
} else {
current->backing_dev_info = inode_to_bdi(inode);
written = generic_perform_write(file, from, *ppos);

View File

@ -51,13 +51,22 @@ int ocfs2_add_inode_data(struct ocfs2_super *osb,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_alloc_context *meta_ac,
enum ocfs2_alloc_restarted *reason_ret);
int ocfs2_set_inode_size(handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size);
int ocfs2_simple_size_update(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size);
int ocfs2_truncate_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size);
int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
u64 new_i_size, u64 zero_to);
int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
loff_t zero_to);
int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
u32 clusters_to_add, int mark_unwritten);
int ocfs2_setattr(struct dentry *dentry, struct iattr *attr);
int ocfs2_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);

View File

@ -648,7 +648,7 @@ static int ocfs2_remove_inode(struct inode *inode,
if (!(OCFS2_I(inode)->ip_flags & OCFS2_INODE_SKIP_ORPHAN_DIR)) {
status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode,
orphan_dir_bh);
orphan_dir_bh, false);
if (status < 0) {
mlog_errno(status);
goto bail_commit;

View File

@ -81,6 +81,8 @@ struct ocfs2_inode_info
tid_t i_sync_tid;
tid_t i_datasync_tid;
wait_queue_head_t append_dio_wq;
struct dquot *i_dquot[MAXQUOTAS];
};

View File

@ -50,6 +50,8 @@
#include "sysfile.h"
#include "uptodate.h"
#include "quota.h"
#include "file.h"
#include "namei.h"
#include "buffer_head_io.h"
#include "ocfs2_trace.h"
@ -69,13 +71,15 @@ static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num);
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot);
int slot,
enum ocfs2_orphan_reco_type orphan_reco_type);
static int ocfs2_commit_thread(void *arg);
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec);
struct ocfs2_quota_recovery *qrec,
enum ocfs2_orphan_reco_type orphan_reco_type);
static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
{
@ -149,7 +153,8 @@ int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
return 0;
}
void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
struct ocfs2_replay_map *replay_map = osb->replay_map;
int i;
@ -163,7 +168,8 @@ void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
for (i = 0; i < replay_map->rm_slots; i++)
if (replay_map->rm_replay_slots[i])
ocfs2_queue_recovery_completion(osb->journal, i, NULL,
NULL, NULL);
NULL, NULL,
orphan_reco_type);
replay_map->rm_state = REPLAY_DONE;
}
@ -1174,6 +1180,7 @@ struct ocfs2_la_recovery_item {
struct ocfs2_dinode *lri_la_dinode;
struct ocfs2_dinode *lri_tl_dinode;
struct ocfs2_quota_recovery *lri_qrec;
enum ocfs2_orphan_reco_type lri_orphan_reco_type;
};
/* Does the second half of the recovery process. By this point, the
@ -1195,6 +1202,7 @@ void ocfs2_complete_recovery(struct work_struct *work)
struct ocfs2_dinode *la_dinode, *tl_dinode;
struct ocfs2_la_recovery_item *item, *n;
struct ocfs2_quota_recovery *qrec;
enum ocfs2_orphan_reco_type orphan_reco_type;
LIST_HEAD(tmp_la_list);
trace_ocfs2_complete_recovery(
@ -1212,6 +1220,7 @@ void ocfs2_complete_recovery(struct work_struct *work)
la_dinode = item->lri_la_dinode;
tl_dinode = item->lri_tl_dinode;
qrec = item->lri_qrec;
orphan_reco_type = item->lri_orphan_reco_type;
trace_ocfs2_complete_recovery_slot(item->lri_slot,
la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
@ -1236,7 +1245,8 @@ void ocfs2_complete_recovery(struct work_struct *work)
kfree(tl_dinode);
}
ret = ocfs2_recover_orphans(osb, item->lri_slot);
ret = ocfs2_recover_orphans(osb, item->lri_slot,
orphan_reco_type);
if (ret < 0)
mlog_errno(ret);
@ -1261,7 +1271,8 @@ static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec)
struct ocfs2_quota_recovery *qrec,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
struct ocfs2_la_recovery_item *item;
@ -1285,6 +1296,7 @@ static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
item->lri_slot = slot_num;
item->lri_tl_dinode = tl_dinode;
item->lri_qrec = qrec;
item->lri_orphan_reco_type = orphan_reco_type;
spin_lock(&journal->j_lock);
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
@ -1304,7 +1316,8 @@ void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
/* No need to queue up our truncate_log as regular cleanup will catch
* that */
ocfs2_queue_recovery_completion(journal, osb->slot_num,
osb->local_alloc_copy, NULL, NULL);
osb->local_alloc_copy, NULL, NULL,
ORPHAN_NEED_TRUNCATE);
ocfs2_schedule_truncate_log_flush(osb, 0);
osb->local_alloc_copy = NULL;
@ -1312,7 +1325,7 @@ void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
/* queue to recover orphan slots for all offline slots */
ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
ocfs2_queue_replay_slots(osb);
ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
ocfs2_free_replay_slots(osb);
}
@ -1323,7 +1336,8 @@ void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
osb->slot_num,
NULL,
NULL,
osb->quota_rec);
osb->quota_rec,
ORPHAN_NEED_TRUNCATE);
osb->quota_rec = NULL;
}
}
@ -1360,7 +1374,7 @@ static int __ocfs2_recovery_thread(void *arg)
/* queue recovery for our own slot */
ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
NULL, NULL);
NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
spin_lock(&osb->osb_lock);
while (rm->rm_used) {
@ -1419,13 +1433,14 @@ static int __ocfs2_recovery_thread(void *arg)
continue;
}
ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
NULL, NULL, qrec);
NULL, NULL, qrec,
ORPHAN_NEED_TRUNCATE);
}
ocfs2_super_unlock(osb, 1);
/* queue recovery for offline slots */
ocfs2_queue_replay_slots(osb);
ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
bail:
mutex_lock(&osb->recovery_lock);
@ -1711,7 +1726,7 @@ static int ocfs2_recover_node(struct ocfs2_super *osb,
/* This will kfree the memory pointed to by la_copy and tl_copy */
ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
tl_copy, NULL);
tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
status = 0;
done:
@ -1901,7 +1916,7 @@ void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
for (i = 0; i < osb->max_slots; i++)
ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
NULL);
NULL, ORPHAN_NO_NEED_TRUNCATE);
/*
* We queued a recovery on orphan slots, increment the sequence
* number and update LVB so other node will skip the scan for a while
@ -2000,6 +2015,13 @@ static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
if (IS_ERR(iter))
return 0;
/* Skip inodes which are already added to recover list, since dio may
* happen concurrently with unlink/rename */
if (OCFS2_I(iter)->ip_next_orphan) {
iput(iter);
return 0;
}
trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
/* No locking is required for the next_orphan queue as there
* is only ever a single process doing orphan recovery. */
@ -2108,7 +2130,8 @@ static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
* advertising our state to ocfs2_delete_inode().
*/
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot)
int slot,
enum ocfs2_orphan_reco_type orphan_reco_type)
{
int ret = 0;
struct inode *inode = NULL;
@ -2132,13 +2155,60 @@ static int ocfs2_recover_orphans(struct ocfs2_super *osb,
(unsigned long long)oi->ip_blkno);
iter = oi->ip_next_orphan;
oi->ip_next_orphan = NULL;
spin_lock(&oi->ip_lock);
/* Set the proper information to get us going into
* ocfs2_delete_inode. */
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
spin_unlock(&oi->ip_lock);
/*
* We need to take and drop the inode lock to
* force read inode from disk.
*/
ret = ocfs2_inode_lock(inode, NULL, 0);
if (ret) {
mlog_errno(ret);
goto next;
}
ocfs2_inode_unlock(inode, 0);
if (inode->i_nlink == 0) {
spin_lock(&oi->ip_lock);
/* Set the proper information to get us going into
* ocfs2_delete_inode. */
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
spin_unlock(&oi->ip_lock);
} else if (orphan_reco_type == ORPHAN_NEED_TRUNCATE) {
struct buffer_head *di_bh = NULL;
ret = ocfs2_rw_lock(inode, 1);
if (ret) {
mlog_errno(ret);
goto next;
}
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret < 0) {
ocfs2_rw_unlock(inode, 1);
mlog_errno(ret);
goto next;
}
ret = ocfs2_truncate_file(inode, di_bh,
i_size_read(inode));
ocfs2_inode_unlock(inode, 1);
ocfs2_rw_unlock(inode, 1);
brelse(di_bh);
if (ret < 0) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto next;
}
ret = ocfs2_del_inode_from_orphan(osb, inode, 0, 0);
if (ret)
mlog_errno(ret);
wake_up(&OCFS2_I(inode)->append_dio_wq);
} /* else if ORPHAN_NO_NEED_TRUNCATE, do nothing */
next:
iput(inode);
inode = iter;

View File

@ -472,6 +472,11 @@ static inline int ocfs2_unlink_credits(struct super_block *sb)
* orphan dir index leaf */
#define OCFS2_DELETE_INODE_CREDITS (3 * OCFS2_INODE_UPDATE_CREDITS + 4)
/* dinode + orphan dir dinode + extent tree leaf block + orphan dir entry +
* orphan dir index root + orphan dir index leaf */
#define OCFS2_INODE_ADD_TO_ORPHAN_CREDITS (2 * OCFS2_INODE_UPDATE_CREDITS + 4)
#define OCFS2_INODE_DEL_FROM_ORPHAN_CREDITS OCFS2_INODE_ADD_TO_ORPHAN_CREDITS
/* dinode update, old dir dinode update, new dir dinode update, old
* dir dir entry, new dir dir entry, dir entry update for renaming
* directory + target unlink + 3 x dir index leaves */

View File

@ -79,7 +79,8 @@ static int ocfs2_prepare_orphan_dir(struct ocfs2_super *osb,
struct inode **ret_orphan_dir,
u64 blkno,
char *name,
struct ocfs2_dir_lookup_result *lookup);
struct ocfs2_dir_lookup_result *lookup,
bool dio);
static int ocfs2_orphan_add(struct ocfs2_super *osb,
handle_t *handle,
@ -87,7 +88,8 @@ static int ocfs2_orphan_add(struct ocfs2_super *osb,
struct buffer_head *fe_bh,
char *name,
struct ocfs2_dir_lookup_result *lookup,
struct inode *orphan_dir_inode);
struct inode *orphan_dir_inode,
bool dio);
static int ocfs2_create_symlink_data(struct ocfs2_super *osb,
handle_t *handle,
@ -104,6 +106,8 @@ static int ocfs2_double_lock(struct ocfs2_super *osb,
static void ocfs2_double_unlock(struct inode *inode1, struct inode *inode2);
/* An orphan dir name is an 8 byte value, printed as a hex string */
#define OCFS2_ORPHAN_NAMELEN ((int)(2 * sizeof(u64)))
#define OCFS2_DIO_ORPHAN_PREFIX "dio-"
#define OCFS2_DIO_ORPHAN_PREFIX_LEN 4
static struct dentry *ocfs2_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
@ -952,7 +956,8 @@ static int ocfs2_unlink(struct inode *dir,
if (ocfs2_inode_is_unlinkable(inode)) {
status = ocfs2_prepare_orphan_dir(osb, &orphan_dir,
OCFS2_I(inode)->ip_blkno,
orphan_name, &orphan_insert);
orphan_name, &orphan_insert,
false);
if (status < 0) {
mlog_errno(status);
goto leave;
@ -1004,7 +1009,7 @@ static int ocfs2_unlink(struct inode *dir,
if (is_unlinkable) {
status = ocfs2_orphan_add(osb, handle, inode, fe_bh,
orphan_name, &orphan_insert, orphan_dir);
orphan_name, &orphan_insert, orphan_dir, false);
if (status < 0)
mlog_errno(status);
}
@ -1440,7 +1445,8 @@ static int ocfs2_rename(struct inode *old_dir,
if (S_ISDIR(new_inode->i_mode) || (new_inode->i_nlink == 1)) {
status = ocfs2_prepare_orphan_dir(osb, &orphan_dir,
OCFS2_I(new_inode)->ip_blkno,
orphan_name, &orphan_insert);
orphan_name, &orphan_insert,
false);
if (status < 0) {
mlog_errno(status);
goto bail;
@ -1507,7 +1513,7 @@ static int ocfs2_rename(struct inode *old_dir,
if (should_add_orphan) {
status = ocfs2_orphan_add(osb, handle, new_inode,
newfe_bh, orphan_name,
&orphan_insert, orphan_dir);
&orphan_insert, orphan_dir, false);
if (status < 0) {
mlog_errno(status);
goto bail;
@ -2088,12 +2094,28 @@ static int __ocfs2_prepare_orphan_dir(struct inode *orphan_dir_inode,
struct buffer_head *orphan_dir_bh,
u64 blkno,
char *name,
struct ocfs2_dir_lookup_result *lookup)
struct ocfs2_dir_lookup_result *lookup,
bool dio)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(orphan_dir_inode->i_sb);
int namelen = dio ?
(OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN) :
OCFS2_ORPHAN_NAMELEN;
ret = ocfs2_blkno_stringify(blkno, name);
if (dio) {
ret = snprintf(name, OCFS2_DIO_ORPHAN_PREFIX_LEN + 1, "%s",
OCFS2_DIO_ORPHAN_PREFIX);
if (ret != OCFS2_DIO_ORPHAN_PREFIX_LEN) {
ret = -EINVAL;
mlog_errno(ret);
return ret;
}
ret = ocfs2_blkno_stringify(blkno,
name + OCFS2_DIO_ORPHAN_PREFIX_LEN);
} else
ret = ocfs2_blkno_stringify(blkno, name);
if (ret < 0) {
mlog_errno(ret);
return ret;
@ -2101,7 +2123,7 @@ static int __ocfs2_prepare_orphan_dir(struct inode *orphan_dir_inode,
ret = ocfs2_prepare_dir_for_insert(osb, orphan_dir_inode,
orphan_dir_bh, name,
OCFS2_ORPHAN_NAMELEN, lookup);
namelen, lookup);
if (ret < 0) {
mlog_errno(ret);
return ret;
@ -2128,7 +2150,8 @@ static int ocfs2_prepare_orphan_dir(struct ocfs2_super *osb,
struct inode **ret_orphan_dir,
u64 blkno,
char *name,
struct ocfs2_dir_lookup_result *lookup)
struct ocfs2_dir_lookup_result *lookup,
bool dio)
{
struct inode *orphan_dir_inode = NULL;
struct buffer_head *orphan_dir_bh = NULL;
@ -2142,7 +2165,7 @@ static int ocfs2_prepare_orphan_dir(struct ocfs2_super *osb,
}
ret = __ocfs2_prepare_orphan_dir(orphan_dir_inode, orphan_dir_bh,
blkno, name, lookup);
blkno, name, lookup, dio);
if (ret < 0) {
mlog_errno(ret);
goto out;
@ -2170,12 +2193,16 @@ static int ocfs2_orphan_add(struct ocfs2_super *osb,
struct buffer_head *fe_bh,
char *name,
struct ocfs2_dir_lookup_result *lookup,
struct inode *orphan_dir_inode)
struct inode *orphan_dir_inode,
bool dio)
{
struct buffer_head *orphan_dir_bh = NULL;
int status = 0;
struct ocfs2_dinode *orphan_fe;
struct ocfs2_dinode *fe = (struct ocfs2_dinode *) fe_bh->b_data;
int namelen = dio ?
(OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN) :
OCFS2_ORPHAN_NAMELEN;
trace_ocfs2_orphan_add_begin(
(unsigned long long)OCFS2_I(inode)->ip_blkno);
@ -2219,7 +2246,7 @@ static int ocfs2_orphan_add(struct ocfs2_super *osb,
ocfs2_journal_dirty(handle, orphan_dir_bh);
status = __ocfs2_add_entry(handle, orphan_dir_inode, name,
OCFS2_ORPHAN_NAMELEN, inode,
namelen, inode,
OCFS2_I(inode)->ip_blkno,
orphan_dir_bh, lookup);
if (status < 0) {
@ -2227,13 +2254,21 @@ static int ocfs2_orphan_add(struct ocfs2_super *osb,
goto rollback;
}
fe->i_flags |= cpu_to_le32(OCFS2_ORPHANED_FL);
OCFS2_I(inode)->ip_flags &= ~OCFS2_INODE_SKIP_ORPHAN_DIR;
if (dio) {
/* Update flag OCFS2_DIO_ORPHANED_FL and record the orphan
* slot.
*/
fe->i_flags |= cpu_to_le32(OCFS2_DIO_ORPHANED_FL);
fe->i_dio_orphaned_slot = cpu_to_le16(osb->slot_num);
} else {
fe->i_flags |= cpu_to_le32(OCFS2_ORPHANED_FL);
OCFS2_I(inode)->ip_flags &= ~OCFS2_INODE_SKIP_ORPHAN_DIR;
/* Record which orphan dir our inode now resides
* in. delete_inode will use this to determine which orphan
* dir to lock. */
fe->i_orphaned_slot = cpu_to_le16(osb->slot_num);
/* Record which orphan dir our inode now resides
* in. delete_inode will use this to determine which orphan
* dir to lock. */
fe->i_orphaned_slot = cpu_to_le16(osb->slot_num);
}
ocfs2_journal_dirty(handle, fe_bh);
@ -2258,14 +2293,28 @@ int ocfs2_orphan_del(struct ocfs2_super *osb,
handle_t *handle,
struct inode *orphan_dir_inode,
struct inode *inode,
struct buffer_head *orphan_dir_bh)
struct buffer_head *orphan_dir_bh,
bool dio)
{
char name[OCFS2_ORPHAN_NAMELEN + 1];
const int namelen = OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN;
char name[namelen + 1];
struct ocfs2_dinode *orphan_fe;
int status = 0;
struct ocfs2_dir_lookup_result lookup = { NULL, };
status = ocfs2_blkno_stringify(OCFS2_I(inode)->ip_blkno, name);
if (dio) {
status = snprintf(name, OCFS2_DIO_ORPHAN_PREFIX_LEN + 1, "%s",
OCFS2_DIO_ORPHAN_PREFIX);
if (status != OCFS2_DIO_ORPHAN_PREFIX_LEN) {
status = -EINVAL;
mlog_errno(status);
return status;
}
status = ocfs2_blkno_stringify(OCFS2_I(inode)->ip_blkno,
name + OCFS2_DIO_ORPHAN_PREFIX_LEN);
} else
status = ocfs2_blkno_stringify(OCFS2_I(inode)->ip_blkno, name);
if (status < 0) {
mlog_errno(status);
goto leave;
@ -2273,10 +2322,10 @@ int ocfs2_orphan_del(struct ocfs2_super *osb,
trace_ocfs2_orphan_del(
(unsigned long long)OCFS2_I(orphan_dir_inode)->ip_blkno,
name, OCFS2_ORPHAN_NAMELEN);
name, namelen);
/* find it's spot in the orphan directory */
status = ocfs2_find_entry(name, OCFS2_ORPHAN_NAMELEN, orphan_dir_inode,
status = ocfs2_find_entry(name, namelen, orphan_dir_inode,
&lookup);
if (status) {
mlog_errno(status);
@ -2376,7 +2425,8 @@ static int ocfs2_prep_new_orphaned_file(struct inode *dir,
}
ret = __ocfs2_prepare_orphan_dir(orphan_dir, orphan_dir_bh,
di_blkno, orphan_name, orphan_insert);
di_blkno, orphan_name, orphan_insert,
false);
if (ret < 0) {
mlog_errno(ret);
goto out;
@ -2482,7 +2532,7 @@ int ocfs2_create_inode_in_orphan(struct inode *dir,
di = (struct ocfs2_dinode *)new_di_bh->b_data;
status = ocfs2_orphan_add(osb, handle, inode, new_di_bh, orphan_name,
&orphan_insert, orphan_dir);
&orphan_insert, orphan_dir, false);
if (status < 0) {
mlog_errno(status);
goto leave;
@ -2527,6 +2577,186 @@ int ocfs2_create_inode_in_orphan(struct inode *dir,
return status;
}
static int ocfs2_dio_orphan_recovered(struct inode *inode)
{
int ret;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di = NULL;
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret < 0) {
mlog_errno(ret);
return 0;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
ret = !(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL));
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
return ret;
}
#define OCFS2_DIO_ORPHANED_FL_CHECK_INTERVAL 10000
int ocfs2_add_inode_to_orphan(struct ocfs2_super *osb,
struct inode *inode)
{
char orphan_name[OCFS2_DIO_ORPHAN_PREFIX_LEN + OCFS2_ORPHAN_NAMELEN + 1];
struct inode *orphan_dir_inode = NULL;
struct ocfs2_dir_lookup_result orphan_insert = { NULL, };
struct buffer_head *di_bh = NULL;
int status = 0;
handle_t *handle = NULL;
struct ocfs2_dinode *di = NULL;
restart:
status = ocfs2_inode_lock(inode, &di_bh, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
/*
* Another append dio crashed?
* If so, wait for recovery first.
*/
if (unlikely(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL))) {
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
wait_event_interruptible_timeout(OCFS2_I(inode)->append_dio_wq,
ocfs2_dio_orphan_recovered(inode),
msecs_to_jiffies(OCFS2_DIO_ORPHANED_FL_CHECK_INTERVAL));
goto restart;
}
status = ocfs2_prepare_orphan_dir(osb, &orphan_dir_inode,
OCFS2_I(inode)->ip_blkno,
orphan_name,
&orphan_insert,
true);
if (status < 0) {
mlog_errno(status);
goto bail_unlock_inode;
}
handle = ocfs2_start_trans(osb,
OCFS2_INODE_ADD_TO_ORPHAN_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
goto bail_unlock_orphan;
}
status = ocfs2_orphan_add(osb, handle, inode, di_bh, orphan_name,
&orphan_insert, orphan_dir_inode, true);
if (status)
mlog_errno(status);
ocfs2_commit_trans(osb, handle);
bail_unlock_orphan:
ocfs2_inode_unlock(orphan_dir_inode, 1);
mutex_unlock(&orphan_dir_inode->i_mutex);
iput(orphan_dir_inode);
ocfs2_free_dir_lookup_result(&orphan_insert);
bail_unlock_inode:
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
bail:
return status;
}
int ocfs2_del_inode_from_orphan(struct ocfs2_super *osb,
struct inode *inode, int update_isize,
loff_t end)
{
struct inode *orphan_dir_inode = NULL;
struct buffer_head *orphan_dir_bh = NULL;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di = NULL;
handle_t *handle = NULL;
int status = 0;
status = ocfs2_inode_lock(inode, &di_bh, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
orphan_dir_inode = ocfs2_get_system_file_inode(osb,
ORPHAN_DIR_SYSTEM_INODE,
le16_to_cpu(di->i_dio_orphaned_slot));
if (!orphan_dir_inode) {
status = -ENOENT;
mlog_errno(status);
goto bail_unlock_inode;
}
mutex_lock(&orphan_dir_inode->i_mutex);
status = ocfs2_inode_lock(orphan_dir_inode, &orphan_dir_bh, 1);
if (status < 0) {
mutex_unlock(&orphan_dir_inode->i_mutex);
iput(orphan_dir_inode);
mlog_errno(status);
goto bail_unlock_inode;
}
handle = ocfs2_start_trans(osb,
OCFS2_INODE_DEL_FROM_ORPHAN_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
goto bail_unlock_orphan;
}
BUG_ON(!(di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)));
status = ocfs2_orphan_del(osb, handle, orphan_dir_inode,
inode, orphan_dir_bh, true);
if (status < 0) {
mlog_errno(status);
goto bail_commit;
}
status = ocfs2_journal_access_di(handle,
INODE_CACHE(inode),
di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail_commit;
}
di->i_flags &= ~cpu_to_le32(OCFS2_DIO_ORPHANED_FL);
di->i_dio_orphaned_slot = 0;
if (update_isize) {
status = ocfs2_set_inode_size(handle, inode, di_bh, end);
if (status)
mlog_errno(status);
} else
ocfs2_journal_dirty(handle, di_bh);
bail_commit:
ocfs2_commit_trans(osb, handle);
bail_unlock_orphan:
ocfs2_inode_unlock(orphan_dir_inode, 1);
mutex_unlock(&orphan_dir_inode->i_mutex);
brelse(orphan_dir_bh);
iput(orphan_dir_inode);
bail_unlock_inode:
ocfs2_inode_unlock(inode, 1);
brelse(di_bh);
bail:
return status;
}
int ocfs2_mv_orphaned_inode_to_new(struct inode *dir,
struct inode *inode,
struct dentry *dentry)
@ -2615,7 +2845,7 @@ int ocfs2_mv_orphaned_inode_to_new(struct inode *dir,
}
status = ocfs2_orphan_del(osb, handle, orphan_dir_inode, inode,
orphan_dir_bh);
orphan_dir_bh, false);
if (status < 0) {
mlog_errno(status);
goto out_commit;

View File

@ -34,10 +34,16 @@ int ocfs2_orphan_del(struct ocfs2_super *osb,
handle_t *handle,
struct inode *orphan_dir_inode,
struct inode *inode,
struct buffer_head *orphan_dir_bh);
struct buffer_head *orphan_dir_bh,
bool dio);
int ocfs2_create_inode_in_orphan(struct inode *dir,
int mode,
struct inode **new_inode);
int ocfs2_add_inode_to_orphan(struct ocfs2_super *osb,
struct inode *inode);
int ocfs2_del_inode_from_orphan(struct ocfs2_super *osb,
struct inode *inode, int update_isize,
loff_t end);
int ocfs2_mv_orphaned_inode_to_new(struct inode *dir,
struct inode *new_inode,
struct dentry *new_dentry);

View File

@ -209,6 +209,11 @@ struct ocfs2_lock_res {
#endif
};
enum ocfs2_orphan_reco_type {
ORPHAN_NO_NEED_TRUNCATE = 0,
ORPHAN_NEED_TRUNCATE,
};
enum ocfs2_orphan_scan_state {
ORPHAN_SCAN_ACTIVE,
ORPHAN_SCAN_INACTIVE
@ -495,6 +500,14 @@ static inline int ocfs2_writes_unwritten_extents(struct ocfs2_super *osb)
return 0;
}
static inline int ocfs2_supports_append_dio(struct ocfs2_super *osb)
{
if (osb->s_feature_ro_compat & OCFS2_FEATURE_RO_COMPAT_APPEND_DIO)
return 1;
return 0;
}
static inline int ocfs2_supports_inline_data(struct ocfs2_super *osb)
{
if (osb->s_feature_incompat & OCFS2_FEATURE_INCOMPAT_INLINE_DATA)
@ -726,6 +739,16 @@ static inline unsigned int ocfs2_clusters_for_bytes(struct super_block *sb,
return clusters;
}
static inline unsigned int ocfs2_bytes_to_clusters(struct super_block *sb,
u64 bytes)
{
int cl_bits = OCFS2_SB(sb)->s_clustersize_bits;
unsigned int clusters;
clusters = (unsigned int)(bytes >> cl_bits);
return clusters;
}
static inline u64 ocfs2_blocks_for_bytes(struct super_block *sb,
u64 bytes)
{

View File

@ -105,7 +105,8 @@
| OCFS2_FEATURE_INCOMPAT_CLUSTERINFO)
#define OCFS2_FEATURE_RO_COMPAT_SUPP (OCFS2_FEATURE_RO_COMPAT_UNWRITTEN \
| OCFS2_FEATURE_RO_COMPAT_USRQUOTA \
| OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)
| OCFS2_FEATURE_RO_COMPAT_GRPQUOTA \
| OCFS2_FEATURE_RO_COMPAT_APPEND_DIO)
/*
* Heartbeat-only devices are missing journals and other files. The
@ -199,6 +200,11 @@
#define OCFS2_FEATURE_RO_COMPAT_USRQUOTA 0x0002
#define OCFS2_FEATURE_RO_COMPAT_GRPQUOTA 0x0004
/*
* Append Direct IO support
*/
#define OCFS2_FEATURE_RO_COMPAT_APPEND_DIO 0x0008
/* The byte offset of the first backup block will be 1G.
* The following will be 4G, 16G, 64G, 256G and 1T.
*/
@ -229,6 +235,8 @@
#define OCFS2_CHAIN_FL (0x00000400) /* Chain allocator */
#define OCFS2_DEALLOC_FL (0x00000800) /* Truncate log */
#define OCFS2_QUOTA_FL (0x00001000) /* Quota file */
#define OCFS2_DIO_ORPHANED_FL (0X00002000) /* On the orphan list especially
* for dio */
/*
* Flags on ocfs2_dinode.i_dyn_features
@ -729,7 +737,9 @@ struct ocfs2_dinode {
inode belongs to. Only valid
if allocated from a
discontiguous block group */
/*A0*/ __le64 i_reserved2[3];
/*A0*/ __le16 i_dio_orphaned_slot; /* only used for append dio write */
__le16 i_reserved1[3];
__le64 i_reserved2[2];
/*B8*/ union {
__le64 i_pad1; /* Generic way to refer to this
64bit union */

View File

@ -1746,6 +1746,8 @@ static void ocfs2_inode_init_once(void *data)
ocfs2_lock_res_init_once(&oi->ip_inode_lockres);
ocfs2_lock_res_init_once(&oi->ip_open_lockres);
init_waitqueue_head(&oi->append_dio_wq);
ocfs2_metadata_cache_init(INODE_CACHE(&oi->vfs_inode),
&ocfs2_inode_caching_ops);

View File

@ -667,11 +667,8 @@ int open_check_o_direct(struct file *f)
{
/* NB: we're sure to have correct a_ops only after f_op->open */
if (f->f_flags & O_DIRECT) {
if (!f->f_mapping->a_ops ||
((!f->f_mapping->a_ops->direct_IO) &&
(!f->f_mapping->a_ops->get_xip_mem))) {
if (!f->f_mapping->a_ops || !f->f_mapping->a_ops->direct_IO)
return -EINVAL;
}
}
return 0;
}

View File

@ -51,6 +51,7 @@ struct swap_info_struct;
struct seq_file;
struct workqueue_struct;
struct iov_iter;
struct vm_fault;
extern void __init inode_init(void);
extern void __init inode_init_early(void);
@ -361,8 +362,6 @@ struct address_space_operations {
int (*releasepage) (struct page *, gfp_t);
void (*freepage)(struct page *);
ssize_t (*direct_IO)(int, struct kiocb *, struct iov_iter *iter, loff_t offset);
int (*get_xip_mem)(struct address_space *, pgoff_t, int,
void **, unsigned long *);
/*
* migrate the contents of a page to the specified target. If
* migrate_mode is MIGRATE_ASYNC, it must not block.
@ -1677,6 +1676,11 @@ struct super_operations {
#define S_IMA 1024 /* Inode has an associated IMA struct */
#define S_AUTOMOUNT 2048 /* Automount/referral quasi-directory */
#define S_NOSEC 4096 /* no suid or xattr security attributes */
#ifdef CONFIG_FS_DAX
#define S_DAX 8192 /* Direct Access, avoiding the page cache */
#else
#define S_DAX 0 /* Make all the DAX code disappear */
#endif
/*
* Note that nosuid etc flags are inode-specific: setting some file-system
@ -1714,6 +1718,7 @@ struct super_operations {
#define IS_IMA(inode) ((inode)->i_flags & S_IMA)
#define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT)
#define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC)
#define IS_DAX(inode) ((inode)->i_flags & S_DAX)
#define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \
(inode)->i_rdev == WHITEOUT_DEV)
@ -2581,19 +2586,13 @@ extern loff_t fixed_size_llseek(struct file *file, loff_t offset,
extern int generic_file_open(struct inode * inode, struct file * filp);
extern int nonseekable_open(struct inode * inode, struct file * filp);
#ifdef CONFIG_FS_XIP
extern ssize_t xip_file_read(struct file *filp, char __user *buf, size_t len,
loff_t *ppos);
extern int xip_file_mmap(struct file * file, struct vm_area_struct * vma);
extern ssize_t xip_file_write(struct file *filp, const char __user *buf,
size_t len, loff_t *ppos);
extern int xip_truncate_page(struct address_space *mapping, loff_t from);
#else
static inline int xip_truncate_page(struct address_space *mapping, loff_t from)
{
return 0;
}
#endif
ssize_t dax_do_io(int rw, struct kiocb *, struct inode *, struct iov_iter *,
loff_t, get_block_t, dio_iodone_t, int flags);
int dax_clear_blocks(struct inode *, sector_t block, long size);
int dax_zero_page_range(struct inode *, loff_t from, unsigned len, get_block_t);
int dax_truncate_page(struct inode *, loff_t from, get_block_t);
int dax_fault(struct vm_area_struct *, struct vm_fault *, get_block_t);
#define dax_mkwrite(vma, vmf, gb) dax_fault(vma, vmf, gb)
#ifdef CONFIG_BLOCK
typedef void (dio_submit_t)(int rw, struct bio *bio, struct inode *inode,
@ -2750,6 +2749,11 @@ extern int generic_show_options(struct seq_file *m, struct dentry *root);
extern void save_mount_options(struct super_block *sb, char *options);
extern void replace_mount_options(struct super_block *sb, char *options);
static inline bool io_is_direct(struct file *filp)
{
return (filp->f_flags & O_DIRECT) || IS_DAX(file_inode(filp));
}
static inline ino_t parent_ino(struct dentry *dentry)
{
ino_t res;

View File

@ -224,6 +224,7 @@ struct vm_fault {
pgoff_t pgoff; /* Logical page offset based on vma */
void __user *virtual_address; /* Faulting virtual address */
struct page *cow_page; /* Handler may choose to COW */
struct page *page; /* ->fault handlers should return a
* page here, unless VM_FAULT_NOPAGE
* is set (which is also implied by

View File

@ -198,7 +198,7 @@ int page_referenced(struct page *, int is_locked,
int try_to_unmap(struct page *, enum ttu_flags flags);
/*
* Called from mm/filemap_xip.c to unmap empty zero page
* Used by uprobes to replace a userspace page safely
*/
pte_t *__page_check_address(struct page *, struct mm_struct *,
unsigned long, spinlock_t **, int);

375
include/linux/rtc/ds1685.h Normal file
View File

@ -0,0 +1,375 @@
/*
* Definitions for the registers, addresses, and platform data of the
* DS1685/DS1687-series RTC chips.
*
* This Driver also works for the DS17X85/DS17X87 RTC chips. Functionally
* similar to the DS1685/DS1687, they support a few extra features which
* include larger, battery-backed NV-SRAM, burst-mode access, and an RTC
* write counter.
*
* Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>.
* Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>.
*
* References:
* DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10.
* DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10.
* DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105.
* Application Note 90, Using the Multiplex Bus RTC Extended Features.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _LINUX_RTC_DS1685_H_
#define _LINUX_RTC_DS1685_H_
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
/**
* struct ds1685_priv - DS1685 private data structure.
* @dev: pointer to the rtc_device structure.
* @regs: iomapped base address pointer of the RTC registers.
* @regstep: padding/step size between registers (optional).
* @baseaddr: base address of the RTC device.
* @size: resource size.
* @lock: private lock variable for spin locking/unlocking.
* @work: private workqueue.
* @irq: IRQ number assigned to the RTC device.
* @prepare_poweroff: pointer to platform pre-poweroff function.
* @wake_alarm: pointer to platform wake alarm function.
* @post_ram_clear: pointer to platform post ram-clear function.
*/
struct ds1685_priv {
struct rtc_device *dev;
void __iomem *regs;
u32 regstep;
resource_size_t baseaddr;
size_t size;
spinlock_t lock;
struct work_struct work;
int irq_num;
bool bcd_mode;
bool no_irq;
bool uie_unsupported;
bool alloc_io_resources;
u8 (*read)(struct ds1685_priv *, int);
void (*write)(struct ds1685_priv *, int, u8);
void (*prepare_poweroff)(void);
void (*wake_alarm)(void);
void (*post_ram_clear)(void);
};
/**
* struct ds1685_rtc_platform_data - platform data structure.
* @plat_prepare_poweroff: platform-specific pre-poweroff function.
* @plat_wake_alarm: platform-specific wake alarm function.
* @plat_post_ram_clear: platform-specific post ram-clear function.
*
* If your platform needs to use a custom padding/step size between
* registers, or uses one or more of the extended interrupts and needs special
* handling, then include this header file in your platform definition and
* set regstep and the plat_* pointers as appropriate.
*/
struct ds1685_rtc_platform_data {
const u32 regstep;
const bool bcd_mode;
const bool no_irq;
const bool uie_unsupported;
const bool alloc_io_resources;
u8 (*plat_read)(struct ds1685_priv *, int);
void (*plat_write)(struct ds1685_priv *, int, u8);
void (*plat_prepare_poweroff)(void);
void (*plat_wake_alarm)(void);
void (*plat_post_ram_clear)(void);
};
/*
* Time Registers.
*/
#define RTC_SECS 0x00 /* Seconds 00-59 */
#define RTC_SECS_ALARM 0x01 /* Alarm Seconds 00-59 */
#define RTC_MINS 0x02 /* Minutes 00-59 */
#define RTC_MINS_ALARM 0x03 /* Alarm Minutes 00-59 */
#define RTC_HRS 0x04 /* Hours 01-12 AM/PM || 00-23 */
#define RTC_HRS_ALARM 0x05 /* Alarm Hours 01-12 AM/PM || 00-23 */
#define RTC_WDAY 0x06 /* Day of Week 01-07 */
#define RTC_MDAY 0x07 /* Day of Month 01-31 */
#define RTC_MONTH 0x08 /* Month 01-12 */
#define RTC_YEAR 0x09 /* Year 00-99 */
#define RTC_CENTURY 0x48 /* Century 00-99 */
#define RTC_MDAY_ALARM 0x49 /* Alarm Day of Month 01-31 */
/*
* Bit masks for the Time registers in BCD Mode (DM = 0).
*/
#define RTC_SECS_BCD_MASK 0x7f /* - x x x x x x x */
#define RTC_MINS_BCD_MASK 0x7f /* - x x x x x x x */
#define RTC_HRS_12_BCD_MASK 0x1f /* - - - x x x x x */
#define RTC_HRS_24_BCD_MASK 0x3f /* - - x x x x x x */
#define RTC_MDAY_BCD_MASK 0x3f /* - - x x x x x x */
#define RTC_MONTH_BCD_MASK 0x1f /* - - - x x x x x */
#define RTC_YEAR_BCD_MASK 0xff /* x x x x x x x x */
/*
* Bit masks for the Time registers in BIN Mode (DM = 1).
*/
#define RTC_SECS_BIN_MASK 0x3f /* - - x x x x x x */
#define RTC_MINS_BIN_MASK 0x3f /* - - x x x x x x */
#define RTC_HRS_12_BIN_MASK 0x0f /* - - - - x x x x */
#define RTC_HRS_24_BIN_MASK 0x1f /* - - - x x x x x */
#define RTC_MDAY_BIN_MASK 0x1f /* - - - x x x x x */
#define RTC_MONTH_BIN_MASK 0x0f /* - - - - x x x x */
#define RTC_YEAR_BIN_MASK 0x7f /* - x x x x x x x */
/*
* Bit masks common for the Time registers in BCD or BIN Mode.
*/
#define RTC_WDAY_MASK 0x07 /* - - - - - x x x */
#define RTC_CENTURY_MASK 0xff /* x x x x x x x x */
#define RTC_MDAY_ALARM_MASK 0xff /* x x x x x x x x */
#define RTC_HRS_AMPM_MASK BIT(7) /* Mask for the AM/PM bit */
/*
* Control Registers.
*/
#define RTC_CTRL_A 0x0a /* Control Register A */
#define RTC_CTRL_B 0x0b /* Control Register B */
#define RTC_CTRL_C 0x0c /* Control Register C */
#define RTC_CTRL_D 0x0d /* Control Register D */
#define RTC_EXT_CTRL_4A 0x4a /* Extended Control Register 4A */
#define RTC_EXT_CTRL_4B 0x4b /* Extended Control Register 4B */
/*
* Bit names in Control Register A.
*/
#define RTC_CTRL_A_UIP BIT(7) /* Update In Progress */
#define RTC_CTRL_A_DV2 BIT(6) /* Countdown Chain */
#define RTC_CTRL_A_DV1 BIT(5) /* Oscillator Enable */
#define RTC_CTRL_A_DV0 BIT(4) /* Bank Select */
#define RTC_CTRL_A_RS2 BIT(2) /* Rate-Selection Bit 2 */
#define RTC_CTRL_A_RS3 BIT(3) /* Rate-Selection Bit 3 */
#define RTC_CTRL_A_RS1 BIT(1) /* Rate-Selection Bit 1 */
#define RTC_CTRL_A_RS0 BIT(0) /* Rate-Selection Bit 0 */
#define RTC_CTRL_A_RS_MASK 0x0f /* RS3 + RS2 + RS1 + RS0 */
/*
* Bit names in Control Register B.
*/
#define RTC_CTRL_B_SET BIT(7) /* SET Bit */
#define RTC_CTRL_B_PIE BIT(6) /* Periodic-Interrupt Enable */
#define RTC_CTRL_B_AIE BIT(5) /* Alarm-Interrupt Enable */
#define RTC_CTRL_B_UIE BIT(4) /* Update-Ended Interrupt-Enable */
#define RTC_CTRL_B_SQWE BIT(3) /* Square-Wave Enable */
#define RTC_CTRL_B_DM BIT(2) /* Data Mode */
#define RTC_CTRL_B_2412 BIT(1) /* 12-Hr/24-Hr Mode */
#define RTC_CTRL_B_DSE BIT(0) /* Daylight Savings Enable */
#define RTC_CTRL_B_PAU_MASK 0x70 /* PIE + AIE + UIE */
/*
* Bit names in Control Register C.
*
* BIT(0), BIT(1), BIT(2), & BIT(3) are unused, always return 0, and cannot
* be written to.
*/
#define RTC_CTRL_C_IRQF BIT(7) /* Interrupt-Request Flag */
#define RTC_CTRL_C_PF BIT(6) /* Periodic-Interrupt Flag */
#define RTC_CTRL_C_AF BIT(5) /* Alarm-Interrupt Flag */
#define RTC_CTRL_C_UF BIT(4) /* Update-Ended Interrupt Flag */
#define RTC_CTRL_C_PAU_MASK 0x70 /* PF + AF + UF */
/*
* Bit names in Control Register D.
*
* BIT(0) through BIT(6) are unused, always return 0, and cannot
* be written to.
*/
#define RTC_CTRL_D_VRT BIT(7) /* Valid RAM and Time */
/*
* Bit names in Extended Control Register 4A.
*
* On the DS1685/DS1687/DS1689/DS1693, BIT(4) and BIT(5) are reserved for
* future use. They can be read from and written to, but have no effect
* on the RTC's operation.
*
* On the DS17x85/DS17x87, BIT(5) is Burst-Mode Enable (BME), and allows
* access to the extended NV-SRAM by automatically incrementing the address
* register when they are read from or written to.
*/
#define RTC_CTRL_4A_VRT2 BIT(7) /* Auxillary Battery Status */
#define RTC_CTRL_4A_INCR BIT(6) /* Increment-in-Progress Status */
#define RTC_CTRL_4A_PAB BIT(3) /* Power-Active Bar Control */
#define RTC_CTRL_4A_RF BIT(2) /* RAM-Clear Flag */
#define RTC_CTRL_4A_WF BIT(1) /* Wake-Up Alarm Flag */
#define RTC_CTRL_4A_KF BIT(0) /* Kickstart Flag */
#if !defined(CONFIG_RTC_DRV_DS1685) && !defined(CONFIG_RTC_DRV_DS1689)
#define RTC_CTRL_4A_BME BIT(5) /* Burst-Mode Enable */
#endif
#define RTC_CTRL_4A_RWK_MASK 0x07 /* RF + WF + KF */
/*
* Bit names in Extended Control Register 4B.
*/
#define RTC_CTRL_4B_ABE BIT(7) /* Auxillary Battery Enable */
#define RTC_CTRL_4B_E32K BIT(6) /* Enable 32.768Hz on SQW Pin */
#define RTC_CTRL_4B_CS BIT(5) /* Crystal Select */
#define RTC_CTRL_4B_RCE BIT(4) /* RAM Clear-Enable */
#define RTC_CTRL_4B_PRS BIT(3) /* PAB Reset-Select */
#define RTC_CTRL_4B_RIE BIT(2) /* RAM Clear-Interrupt Enable */
#define RTC_CTRL_4B_WIE BIT(1) /* Wake-Up Alarm-Interrupt Enable */
#define RTC_CTRL_4B_KSE BIT(0) /* Kickstart Interrupt-Enable */
#define RTC_CTRL_4B_RWK_MASK 0x07 /* RIE + WIE + KSE */
/*
* Misc register names in Bank 1.
*
* The DV0 bit in Control Register A must be set to 1 for these registers
* to become available, including Extended Control Registers 4A & 4B.
*/
#define RTC_BANK1_SSN_MODEL 0x40 /* Model Number */
#define RTC_BANK1_SSN_BYTE_1 0x41 /* 1st Byte of Serial Number */
#define RTC_BANK1_SSN_BYTE_2 0x42 /* 2nd Byte of Serial Number */
#define RTC_BANK1_SSN_BYTE_3 0x43 /* 3rd Byte of Serial Number */
#define RTC_BANK1_SSN_BYTE_4 0x44 /* 4th Byte of Serial Number */
#define RTC_BANK1_SSN_BYTE_5 0x45 /* 5th Byte of Serial Number */
#define RTC_BANK1_SSN_BYTE_6 0x46 /* 6th Byte of Serial Number */
#define RTC_BANK1_SSN_CRC 0x47 /* Serial CRC Byte */
#define RTC_BANK1_RAM_DATA_PORT 0x53 /* Extended RAM Data Port */
/*
* Model-specific registers in Bank 1.
*
* The addresses below differ depending on the model of the RTC chip
* selected in the kernel configuration. Not all of these features are
* supported in the main driver at present.
*
* DS1685/DS1687 - Extended NV-SRAM address (LSB only).
* DS1689/DS1693 - Vcc, Vbat, Pwr Cycle Counters & Customer-specific S/N.
* DS17x85/DS17x87 - Extended NV-SRAM addresses (MSB & LSB) & Write counter.
*/
#if defined(CONFIG_RTC_DRV_DS1685)
#define RTC_BANK1_RAM_ADDR 0x50 /* NV-SRAM Addr */
#elif defined(CONFIG_RTC_DRV_DS1689)
#define RTC_BANK1_VCC_CTR_LSB 0x54 /* Vcc Counter Addr (LSB) */
#define RTC_BANK1_VCC_CTR_MSB 0x57 /* Vcc Counter Addr (MSB) */
#define RTC_BANK1_VBAT_CTR_LSB 0x58 /* Vbat Counter Addr (LSB) */
#define RTC_BANK1_VBAT_CTR_MSB 0x5b /* Vbat Counter Addr (MSB) */
#define RTC_BANK1_PWR_CTR_LSB 0x5c /* Pwr Cycle Counter Addr (LSB) */
#define RTC_BANK1_PWR_CTR_MSB 0x5d /* Pwr Cycle Counter Addr (MSB) */
#define RTC_BANK1_UNIQ_SN 0x60 /* Customer-specific S/N */
#else /* DS17x85/DS17x87 */
#define RTC_BANK1_RAM_ADDR_LSB 0x50 /* NV-SRAM Addr (LSB) */
#define RTC_BANK1_RAM_ADDR_MSB 0x51 /* NV-SRAM Addr (MSB) */
#define RTC_BANK1_WRITE_CTR 0x5e /* RTC Write Counter */
#endif
/*
* Model numbers.
*
* The DS1688/DS1691 and DS1689/DS1693 chips share the same model number
* and the manual doesn't indicate any major differences. As such, they
* are regarded as the same chip in this driver.
*/
#define RTC_MODEL_DS1685 0x71 /* DS1685/DS1687 */
#define RTC_MODEL_DS17285 0x72 /* DS17285/DS17287 */
#define RTC_MODEL_DS1689 0x73 /* DS1688/DS1691/DS1689/DS1693 */
#define RTC_MODEL_DS17485 0x74 /* DS17485/DS17487 */
#define RTC_MODEL_DS17885 0x78 /* DS17885/DS17887 */
/*
* Periodic Interrupt Rates / Square-Wave Output Frequency
*
* Periodic rates are selected by setting the RS3-RS0 bits in Control
* Register A and enabled via either the E32K bit in Extended Control
* Register 4B or the SQWE bit in Control Register B.
*
* E32K overrides the settings of RS3-RS0 and outputs a frequency of 32768Hz
* on the SQW pin of the RTC chip. While there are 16 possible selections,
* the 1-of-16 decoder is only able to divide the base 32768Hz signal into 13
* smaller frequencies. The values 0x01 and 0x02 are not used and are
* synonymous with 0x08 and 0x09, respectively.
*
* When E32K is set to a logic 1, periodic interrupts are disabled and reading
* /dev/rtc will return -EINVAL. This also applies if the periodic interrupt
* frequency is set to 0Hz.
*
* Not currently used by the rtc-ds1685 driver because the RTC core removed
* support for hardware-generated periodic-interrupts in favour of
* hrtimer-generated interrupts. But these defines are kept around for use
* in userland, as documentation to the hardware, and possible future use if
* hardware-generated periodic interrupts are ever added back.
*/
/* E32K RS3 RS2 RS1 RS0 */
#define RTC_SQW_8192HZ 0x03 /* 0 0 0 1 1 */
#define RTC_SQW_4096HZ 0x04 /* 0 0 1 0 0 */
#define RTC_SQW_2048HZ 0x05 /* 0 0 1 0 1 */
#define RTC_SQW_1024HZ 0x06 /* 0 0 1 1 0 */
#define RTC_SQW_512HZ 0x07 /* 0 0 1 1 1 */
#define RTC_SQW_256HZ 0x08 /* 0 1 0 0 0 */
#define RTC_SQW_128HZ 0x09 /* 0 1 0 0 1 */
#define RTC_SQW_64HZ 0x0a /* 0 1 0 1 0 */
#define RTC_SQW_32HZ 0x0b /* 0 1 0 1 1 */
#define RTC_SQW_16HZ 0x0c /* 0 1 1 0 0 */
#define RTC_SQW_8HZ 0x0d /* 0 1 1 0 1 */
#define RTC_SQW_4HZ 0x0e /* 0 1 1 1 0 */
#define RTC_SQW_2HZ 0x0f /* 0 1 1 1 1 */
#define RTC_SQW_0HZ 0x00 /* 0 0 0 0 0 */
#define RTC_SQW_32768HZ 32768 /* 1 - - - - */
#define RTC_MAX_USER_FREQ 8192
/*
* NVRAM data & addresses:
* - 50 bytes of NVRAM are available just past the clock registers.
* - 64 additional bytes are available in Bank0.
*
* Extended, battery-backed NV-SRAM:
* - DS1685/DS1687 - 128 bytes.
* - DS1689/DS1693 - 0 bytes.
* - DS17285/DS17287 - 2048 bytes.
* - DS17485/DS17487 - 4096 bytes.
* - DS17885/DS17887 - 8192 bytes.
*/
#define NVRAM_TIME_BASE 0x0e /* NVRAM Addr in Time regs */
#define NVRAM_BANK0_BASE 0x40 /* NVRAM Addr in Bank0 regs */
#define NVRAM_SZ_TIME 50
#define NVRAM_SZ_BANK0 64
#if defined(CONFIG_RTC_DRV_DS1685)
# define NVRAM_SZ_EXTND 128
#elif defined(CONFIG_RTC_DRV_DS1689)
# define NVRAM_SZ_EXTND 0
#elif defined(CONFIG_RTC_DRV_DS17285)
# define NVRAM_SZ_EXTND 2048
#elif defined(CONFIG_RTC_DRV_DS17485)
# define NVRAM_SZ_EXTND 4096
#elif defined(CONFIG_RTC_DRV_DS17885)
# define NVRAM_SZ_EXTND 8192
#endif
#define NVRAM_TOTAL_SZ_BANK0 (NVRAM_SZ_TIME + NVRAM_SZ_BANK0)
#define NVRAM_TOTAL_SZ (NVRAM_TOTAL_SZ_BANK0 + NVRAM_SZ_EXTND)
/*
* Function Prototypes.
*/
extern void __noreturn
ds1685_rtc_poweroff(struct platform_device *pdev);
#endif /* _LINUX_RTC_DS1685_H_ */

View File

@ -14,7 +14,7 @@ config BITREVERSE
tristate
config HAVE_ARCH_BITREVERSE
boolean
bool
default n
depends on BITREVERSE
help

View File

@ -55,7 +55,6 @@ obj-$(CONFIG_KMEMCHECK) += kmemcheck.o
obj-$(CONFIG_KASAN) += kasan/
obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o

View File

@ -28,6 +28,7 @@
SYSCALL_DEFINE4(fadvise64_64, int, fd, loff_t, offset, loff_t, len, int, advice)
{
struct fd f = fdget(fd);
struct inode *inode;
struct address_space *mapping;
struct backing_dev_info *bdi;
loff_t endbyte; /* inclusive */
@ -39,7 +40,8 @@ SYSCALL_DEFINE4(fadvise64_64, int, fd, loff_t, offset, loff_t, len, int, advice)
if (!f.file)
return -EBADF;
if (S_ISFIFO(file_inode(f.file)->i_mode)) {
inode = file_inode(f.file);
if (S_ISFIFO(inode->i_mode)) {
ret = -ESPIPE;
goto out;
}
@ -50,7 +52,7 @@ SYSCALL_DEFINE4(fadvise64_64, int, fd, loff_t, offset, loff_t, len, int, advice)
goto out;
}
if (mapping->a_ops->get_xip_mem) {
if (IS_DAX(inode)) {
switch (advice) {
case POSIX_FADV_NORMAL:
case POSIX_FADV_RANDOM:

View File

@ -1695,8 +1695,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
loff_t *ppos = &iocb->ki_pos;
loff_t pos = *ppos;
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (file->f_flags & O_DIRECT) {
if (io_is_direct(file)) {
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
@ -1723,9 +1722,11 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
* we've already read everything we wanted to, or if
* there was a short read because we hit EOF, go ahead
* and return. Otherwise fallthrough to buffered io for
* the rest of the read.
* the rest of the read. Buffered reads will not work for
* DAX files, so don't bother trying.
*/
if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
IS_DAX(inode)) {
file_accessed(file);
goto out;
}
@ -2582,18 +2583,20 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
if (err)
goto out;
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (unlikely(file->f_flags & O_DIRECT)) {
if (io_is_direct(file)) {
loff_t endbyte;
written = generic_file_direct_write(iocb, from, pos);
if (written < 0 || written == count)
/*
* If the write stopped short of completing, fall back to
* buffered writes. Some filesystems do this for writes to
* holes, for example. For DAX files, a buffered write will
* not succeed (even if it did, DAX does not handle dirty
* page-cache pages correctly).
*/
if (written < 0 || written == count || IS_DAX(inode))
goto out;
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
pos += written;
count -= written;

View File

@ -1,478 +0,0 @@
/*
* linux/mm/filemap_xip.c
*
* Copyright (C) 2005 IBM Corporation
* Author: Carsten Otte <cotte@de.ibm.com>
*
* derived from linux/mm/filemap.c - Copyright (C) Linus Torvalds
*
*/
#include <linux/fs.h>
#include <linux/backing-dev.h>
#include <linux/pagemap.h>
#include <linux/export.h>
#include <linux/uio.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
#include <linux/sched.h>
#include <linux/seqlock.h>
#include <linux/mutex.h>
#include <linux/gfp.h>
#include <asm/tlbflush.h>
#include <asm/io.h>
/*
* We do use our own empty page to avoid interference with other users
* of ZERO_PAGE(), such as /dev/zero
*/
static DEFINE_MUTEX(xip_sparse_mutex);
static seqcount_t xip_sparse_seq = SEQCNT_ZERO(xip_sparse_seq);
static struct page *__xip_sparse_page;
/* called under xip_sparse_mutex */
static struct page *xip_sparse_page(void)
{
if (!__xip_sparse_page) {
struct page *page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
if (page)
__xip_sparse_page = page;
}
return __xip_sparse_page;
}
/*
* This is a file read routine for execute in place files, and uses
* the mapping->a_ops->get_xip_mem() function for the actual low-level
* stuff.
*
* Note the struct file* is not used at all. It may be NULL.
*/
static ssize_t
do_xip_mapping_read(struct address_space *mapping,
struct file_ra_state *_ra,
struct file *filp,
char __user *buf,
size_t len,
loff_t *ppos)
{
struct inode *inode = mapping->host;
pgoff_t index, end_index;
unsigned long offset;
loff_t isize, pos;
size_t copied = 0, error = 0;
BUG_ON(!mapping->a_ops->get_xip_mem);
pos = *ppos;
index = pos >> PAGE_CACHE_SHIFT;
offset = pos & ~PAGE_CACHE_MASK;
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
do {
unsigned long nr, left;
void *xip_mem;
unsigned long xip_pfn;
int zero = 0;
/* nr is the maximum number of bytes to copy from this page */
nr = PAGE_CACHE_SIZE;
if (index >= end_index) {
if (index > end_index)
goto out;
nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
if (nr <= offset) {
goto out;
}
}
nr = nr - offset;
if (nr > len - copied)
nr = len - copied;
error = mapping->a_ops->get_xip_mem(mapping, index, 0,
&xip_mem, &xip_pfn);
if (unlikely(error)) {
if (error == -ENODATA) {
/* sparse */
zero = 1;
} else
goto out;
}
/* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
/* address based flush */ ;
/*
* Ok, we have the mem, so now we can copy it to user space...
*
* The actor routine returns how many bytes were actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
if (!zero)
left = __copy_to_user(buf+copied, xip_mem+offset, nr);
else
left = __clear_user(buf + copied, nr);
if (left) {
error = -EFAULT;
goto out;
}
copied += (nr - left);
offset += (nr - left);
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
} while (copied < len);
out:
*ppos = pos + copied;
if (filp)
file_accessed(filp);
return (copied ? copied : error);
}
ssize_t
xip_file_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
{
if (!access_ok(VERIFY_WRITE, buf, len))
return -EFAULT;
return do_xip_mapping_read(filp->f_mapping, &filp->f_ra, filp,
buf, len, ppos);
}
EXPORT_SYMBOL_GPL(xip_file_read);
/*
* __xip_unmap is invoked from xip_unmap and xip_write
*
* This function walks all vmas of the address_space and unmaps the
* __xip_sparse_page when found at pgoff.
*/
static void __xip_unmap(struct address_space * mapping, unsigned long pgoff)
{
struct vm_area_struct *vma;
struct page *page;
unsigned count;
int locked = 0;
count = read_seqcount_begin(&xip_sparse_seq);
page = __xip_sparse_page;
if (!page)
return;
retry:
i_mmap_lock_read(mapping);
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
pte_t *pte, pteval;
spinlock_t *ptl;
struct mm_struct *mm = vma->vm_mm;
unsigned long address = vma->vm_start +
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
pte = page_check_address(page, mm, address, &ptl, 1);
if (pte) {
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pte));
pteval = ptep_clear_flush(vma, address, pte);
page_remove_rmap(page);
dec_mm_counter(mm, MM_FILEPAGES);
BUG_ON(pte_dirty(pteval));
pte_unmap_unlock(pte, ptl);
/* must invalidate_page _before_ freeing the page */
mmu_notifier_invalidate_page(mm, address);
page_cache_release(page);
}
}
i_mmap_unlock_read(mapping);
if (locked) {
mutex_unlock(&xip_sparse_mutex);
} else if (read_seqcount_retry(&xip_sparse_seq, count)) {
mutex_lock(&xip_sparse_mutex);
locked = 1;
goto retry;
}
}
/*
* xip_fault() is invoked via the vma operations vector for a
* mapped memory region to read in file data during a page fault.
*
* This function is derived from filemap_fault, but used for execute in place
*/
static int xip_file_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
pgoff_t size;
void *xip_mem;
unsigned long xip_pfn;
struct page *page;
int error;
/* XXX: are VM_FAULT_ codes OK? */
again:
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (vmf->pgoff >= size)
return VM_FAULT_SIGBUS;
error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 0,
&xip_mem, &xip_pfn);
if (likely(!error))
goto found;
if (error != -ENODATA)
return VM_FAULT_OOM;
/* sparse block */
if ((vma->vm_flags & (VM_WRITE | VM_MAYWRITE)) &&
(vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) &&
(!(mapping->host->i_sb->s_flags & MS_RDONLY))) {
int err;
/* maybe shared writable, allocate new block */
mutex_lock(&xip_sparse_mutex);
error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 1,
&xip_mem, &xip_pfn);
mutex_unlock(&xip_sparse_mutex);
if (error)
return VM_FAULT_SIGBUS;
/* unmap sparse mappings at pgoff from all other vmas */
__xip_unmap(mapping, vmf->pgoff);
found:
err = vm_insert_mixed(vma, (unsigned long)vmf->virtual_address,
xip_pfn);
if (err == -ENOMEM)
return VM_FAULT_OOM;
/*
* err == -EBUSY is fine, we've raced against another thread
* that faulted-in the same page
*/
if (err != -EBUSY)
BUG_ON(err);
return VM_FAULT_NOPAGE;
} else {
int err, ret = VM_FAULT_OOM;
mutex_lock(&xip_sparse_mutex);
write_seqcount_begin(&xip_sparse_seq);
error = mapping->a_ops->get_xip_mem(mapping, vmf->pgoff, 0,
&xip_mem, &xip_pfn);
if (unlikely(!error)) {
write_seqcount_end(&xip_sparse_seq);
mutex_unlock(&xip_sparse_mutex);
goto again;
}
if (error != -ENODATA)
goto out;
/* not shared and writable, use xip_sparse_page() */
page = xip_sparse_page();
if (!page)
goto out;
err = vm_insert_page(vma, (unsigned long)vmf->virtual_address,
page);
if (err == -ENOMEM)
goto out;
ret = VM_FAULT_NOPAGE;
out:
write_seqcount_end(&xip_sparse_seq);
mutex_unlock(&xip_sparse_mutex);
return ret;
}
}
static const struct vm_operations_struct xip_file_vm_ops = {
.fault = xip_file_fault,
.page_mkwrite = filemap_page_mkwrite,
};
int xip_file_mmap(struct file * file, struct vm_area_struct * vma)
{
BUG_ON(!file->f_mapping->a_ops->get_xip_mem);
file_accessed(file);
vma->vm_ops = &xip_file_vm_ops;
vma->vm_flags |= VM_MIXEDMAP;
return 0;
}
EXPORT_SYMBOL_GPL(xip_file_mmap);
static ssize_t
__xip_file_write(struct file *filp, const char __user *buf,
size_t count, loff_t pos, loff_t *ppos)
{
struct address_space * mapping = filp->f_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
struct inode *inode = mapping->host;
long status = 0;
size_t bytes;
ssize_t written = 0;
BUG_ON(!mapping->a_ops->get_xip_mem);
do {
unsigned long index;
unsigned long offset;
size_t copied;
void *xip_mem;
unsigned long xip_pfn;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
bytes = PAGE_CACHE_SIZE - offset;
if (bytes > count)
bytes = count;
status = a_ops->get_xip_mem(mapping, index, 0,
&xip_mem, &xip_pfn);
if (status == -ENODATA) {
/* we allocate a new page unmap it */
mutex_lock(&xip_sparse_mutex);
status = a_ops->get_xip_mem(mapping, index, 1,
&xip_mem, &xip_pfn);
mutex_unlock(&xip_sparse_mutex);
if (!status)
/* unmap page at pgoff from all other vmas */
__xip_unmap(mapping, index);
}
if (status)
break;
copied = bytes -
__copy_from_user_nocache(xip_mem + offset, buf, bytes);
if (likely(copied > 0)) {
status = copied;
if (status >= 0) {
written += status;
count -= status;
pos += status;
buf += status;
}
}
if (unlikely(copied != bytes))
if (status >= 0)
status = -EFAULT;
if (status < 0)
break;
} while (count);
*ppos = pos;
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold i_mutex.
*/
if (pos > inode->i_size) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
return written ? written : status;
}
ssize_t
xip_file_write(struct file *filp, const char __user *buf, size_t len,
loff_t *ppos)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
size_t count;
loff_t pos;
ssize_t ret;
mutex_lock(&inode->i_mutex);
if (!access_ok(VERIFY_READ, buf, len)) {
ret=-EFAULT;
goto out_up;
}
pos = *ppos;
count = len;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
ret = generic_write_checks(filp, &pos, &count, S_ISBLK(inode->i_mode));
if (ret)
goto out_backing;
if (count == 0)
goto out_backing;
ret = file_remove_suid(filp);
if (ret)
goto out_backing;
ret = file_update_time(filp);
if (ret)
goto out_backing;
ret = __xip_file_write (filp, buf, count, pos, ppos);
out_backing:
current->backing_dev_info = NULL;
out_up:
mutex_unlock(&inode->i_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(xip_file_write);
/*
* truncate a page used for execute in place
* functionality is analog to block_truncate_page but does use get_xip_mem
* to get the page instead of page cache
*/
int
xip_truncate_page(struct address_space *mapping, loff_t from)
{
pgoff_t index = from >> PAGE_CACHE_SHIFT;
unsigned offset = from & (PAGE_CACHE_SIZE-1);
unsigned blocksize;
unsigned length;
void *xip_mem;
unsigned long xip_pfn;
int err;
BUG_ON(!mapping->a_ops->get_xip_mem);
blocksize = 1 << mapping->host->i_blkbits;
length = offset & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!length)
return 0;
length = blocksize - length;
err = mapping->a_ops->get_xip_mem(mapping, index, 0,
&xip_mem, &xip_pfn);
if (unlikely(err)) {
if (err == -ENODATA)
/* Hole? No need to truncate */
return 0;
else
return err;
}
memset(xip_mem + offset, 0, length);
return 0;
}
EXPORT_SYMBOL_GPL(xip_truncate_page);

View File

@ -239,7 +239,7 @@ static long madvise_willneed(struct vm_area_struct *vma,
return -EBADF;
#endif
if (file->f_mapping->a_ops->get_xip_mem) {
if (IS_DAX(file_inode(file))) {
/* no bad return value, but ignore advice */
return 0;
}

View File

@ -1965,6 +1965,7 @@ static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
vmf.pgoff = page->index;
vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
vmf.page = page;
vmf.cow_page = NULL;
ret = vma->vm_ops->page_mkwrite(vma, &vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
@ -2329,6 +2330,7 @@ void unmap_mapping_range(struct address_space *mapping,
details.last_index = ULONG_MAX;
/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
i_mmap_lock_write(mapping);
if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
unmap_mapping_range_tree(&mapping->i_mmap, &details);
@ -2638,7 +2640,8 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
* See filemap_fault() and __lock_page_retry().
*/
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
pgoff_t pgoff, unsigned int flags, struct page **page)
pgoff_t pgoff, unsigned int flags,
struct page *cow_page, struct page **page)
{
struct vm_fault vmf;
int ret;
@ -2647,10 +2650,13 @@ static int __do_fault(struct vm_area_struct *vma, unsigned long address,
vmf.pgoff = pgoff;
vmf.flags = flags;
vmf.page = NULL;
vmf.cow_page = cow_page;
ret = vma->vm_ops->fault(vma, &vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
return ret;
if (!vmf.page)
goto out;
if (unlikely(PageHWPoison(vmf.page))) {
if (ret & VM_FAULT_LOCKED)
@ -2664,6 +2670,7 @@ static int __do_fault(struct vm_area_struct *vma, unsigned long address,
else
VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
out:
*page = vmf.page;
return ret;
}
@ -2834,7 +2841,7 @@ static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
pte_unmap_unlock(pte, ptl);
}
ret = __do_fault(vma, address, pgoff, flags, &fault_page);
ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
return ret;
@ -2874,26 +2881,43 @@ static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
return VM_FAULT_OOM;
}
ret = __do_fault(vma, address, pgoff, flags, &fault_page);
ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
goto uncharge_out;
copy_user_highpage(new_page, fault_page, address, vma);
if (fault_page)
copy_user_highpage(new_page, fault_page, address, vma);
__SetPageUptodate(new_page);
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
if (unlikely(!pte_same(*pte, orig_pte))) {
pte_unmap_unlock(pte, ptl);
unlock_page(fault_page);
page_cache_release(fault_page);
if (fault_page) {
unlock_page(fault_page);
page_cache_release(fault_page);
} else {
/*
* The fault handler has no page to lock, so it holds
* i_mmap_lock for read to protect against truncate.
*/
i_mmap_unlock_read(vma->vm_file->f_mapping);
}
goto uncharge_out;
}
do_set_pte(vma, address, new_page, pte, true, true);
mem_cgroup_commit_charge(new_page, memcg, false);
lru_cache_add_active_or_unevictable(new_page, vma);
pte_unmap_unlock(pte, ptl);
unlock_page(fault_page);
page_cache_release(fault_page);
if (fault_page) {
unlock_page(fault_page);
page_cache_release(fault_page);
} else {
/*
* The fault handler has no page to lock, so it holds
* i_mmap_lock for read to protect against truncate.
*/
i_mmap_unlock_read(vma->vm_file->f_mapping);
}
return ret;
uncharge_out:
mem_cgroup_cancel_charge(new_page, memcg);
@ -2912,7 +2936,7 @@ static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
int dirtied = 0;
int ret, tmp;
ret = __do_fault(vma, address, pgoff, flags, &fault_page);
ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
return ret;

View File

@ -28,7 +28,6 @@ If no config files are specified, .config and .config.old are used.
Example usage:
$ diffconfig .config config-with-some-changes
-EXT2_FS_XATTR n
-EXT2_FS_XIP n
CRAMFS n -> y
EXT2_FS y -> n
LOG_BUF_SHIFT 14 -> 16