[RSLIB] Support non-canonical GF representations
For the CAFÉ NAND controller, we need to support non-canonical representations of the Galois field. Allow the caller to provide its own function for generating the field, and CAFÉ can use rslib instead of its own implementation. Signed-off-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
This commit is contained in:
parent
7c96b7a146
commit
d7e5a5462f
|
@ -34,6 +34,7 @@
|
|||
* @prim: Primitive element, index form
|
||||
* @iprim: prim-th root of 1, index form
|
||||
* @gfpoly: The primitive generator polynominal
|
||||
* @gffunc: Function to generate the field, if non-canonical representation
|
||||
* @users: Users of this structure
|
||||
* @list: List entry for the rs control list
|
||||
*/
|
||||
|
@ -48,6 +49,7 @@ struct rs_control {
|
|||
int prim;
|
||||
int iprim;
|
||||
int gfpoly;
|
||||
int (*gffunc)(int);
|
||||
int users;
|
||||
struct list_head list;
|
||||
};
|
||||
|
@ -77,6 +79,8 @@ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
|
|||
/* Create or get a matching rs control structure */
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots);
|
||||
struct rs_control *init_rs_non_canonical(int symsize, int (*func)(int),
|
||||
int fcr, int prim, int nroots);
|
||||
|
||||
/* Release a rs control structure */
|
||||
void free_rs(struct rs_control *rs);
|
||||
|
|
|
@ -56,6 +56,7 @@ static DEFINE_MUTEX(rslistlock);
|
|||
* rs_init - Initialize a Reed-Solomon codec
|
||||
* @symsize: symbol size, bits (1-8)
|
||||
* @gfpoly: Field generator polynomial coefficients
|
||||
* @gffunc: Field generator function
|
||||
* @fcr: first root of RS code generator polynomial, index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
|
@ -63,8 +64,8 @@ static DEFINE_MUTEX(rslistlock);
|
|||
* Allocate a control structure and the polynom arrays for faster
|
||||
* en/decoding. Fill the arrays according to the given parameters.
|
||||
*/
|
||||
static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
||||
int prim, int nroots)
|
||||
static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
|
||||
int fcr, int prim, int nroots)
|
||||
{
|
||||
struct rs_control *rs;
|
||||
int i, j, sr, root, iprim;
|
||||
|
@ -82,6 +83,7 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
|||
rs->prim = prim;
|
||||
rs->nroots = nroots;
|
||||
rs->gfpoly = gfpoly;
|
||||
rs->gffunc = gffunc;
|
||||
|
||||
/* Allocate the arrays */
|
||||
rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
|
||||
|
@ -99,17 +101,26 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int fcr,
|
|||
/* Generate Galois field lookup tables */
|
||||
rs->index_of[0] = rs->nn; /* log(zero) = -inf */
|
||||
rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */
|
||||
sr = 1;
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr <<= 1;
|
||||
if (sr & (1 << symsize))
|
||||
sr ^= gfpoly;
|
||||
sr &= rs->nn;
|
||||
if (gfpoly) {
|
||||
sr = 1;
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr <<= 1;
|
||||
if (sr & (1 << symsize))
|
||||
sr ^= gfpoly;
|
||||
sr &= rs->nn;
|
||||
}
|
||||
} else {
|
||||
sr = gffunc(0);
|
||||
for (i = 0; i < rs->nn; i++) {
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr = gffunc(sr);
|
||||
}
|
||||
}
|
||||
/* If it's not primitive, exit */
|
||||
if(sr != 1)
|
||||
if(sr != rs->alpha_to[0])
|
||||
goto errpol;
|
||||
|
||||
/* Find prim-th root of 1, used in decoding */
|
||||
|
@ -173,18 +184,22 @@ void free_rs(struct rs_control *rs)
|
|||
}
|
||||
|
||||
/**
|
||||
* init_rs - Find a matching or allocate a new rs control structure
|
||||
* init_rs_internal - Find a matching or allocate a new rs control structure
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
||||
* with the 0th coefficient in the low order bit. The polynomial
|
||||
* must be primitive;
|
||||
* @gffunc: pointer to function to generate the next field element,
|
||||
* or the multiplicative identity element if given 0. Used
|
||||
* instead of gfpoly if gfpoly is 0
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots)
|
||||
static struct rs_control *init_rs_internal(int symsize, int gfpoly,
|
||||
int (*gffunc)(int), int fcr,
|
||||
int prim, int nroots)
|
||||
{
|
||||
struct list_head *tmp;
|
||||
struct rs_control *rs;
|
||||
|
@ -208,6 +223,8 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
|||
continue;
|
||||
if (gfpoly != rs->gfpoly)
|
||||
continue;
|
||||
if (gffunc != rs->gffunc)
|
||||
continue;
|
||||
if (fcr != rs->fcr)
|
||||
continue;
|
||||
if (prim != rs->prim)
|
||||
|
@ -220,7 +237,7 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
|||
}
|
||||
|
||||
/* Create a new one */
|
||||
rs = rs_init(symsize, gfpoly, fcr, prim, nroots);
|
||||
rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
|
||||
if (rs) {
|
||||
rs->users = 1;
|
||||
list_add(&rs->list, &rslist);
|
||||
|
@ -230,6 +247,42 @@ struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
|||
return rs;
|
||||
}
|
||||
|
||||
/**
|
||||
* init_rs - Find a matching or allocate a new rs control structure
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gfpoly: the extended Galois field generator polynomial coefficients,
|
||||
* with the 0th coefficient in the low order bit. The polynomial
|
||||
* must be primitive;
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
|
||||
int nroots)
|
||||
{
|
||||
return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
|
||||
}
|
||||
|
||||
/**
|
||||
* init_rs_non_canonical - Find a matching or allocate a new rs control
|
||||
* structure, for fields with non-canonical
|
||||
* representation
|
||||
* @symsize: the symbol size (number of bits)
|
||||
* @gffunc: pointer to function to generate the next field element,
|
||||
* or the multiplicative identity element if given 0. Used
|
||||
* instead of gfpoly if gfpoly is 0
|
||||
* @fcr: the first consecutive root of the rs code generator polynomial
|
||||
* in index form
|
||||
* @prim: primitive element to generate polynomial roots
|
||||
* @nroots: RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
|
||||
int fcr, int prim, int nroots)
|
||||
{
|
||||
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_REED_SOLOMON_ENC8
|
||||
/**
|
||||
* encode_rs8 - Calculate the parity for data values (8bit data width)
|
||||
|
@ -321,6 +374,7 @@ EXPORT_SYMBOL_GPL(decode_rs16);
|
|||
#endif
|
||||
|
||||
EXPORT_SYMBOL_GPL(init_rs);
|
||||
EXPORT_SYMBOL_GPL(init_rs_non_canonical);
|
||||
EXPORT_SYMBOL_GPL(free_rs);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
|
Loading…
Reference in New Issue
Block a user