Fix for a endianess BUG when using btrfs v0.13 with kernels older than 2.6.23
Problem:
Has of v0.13, btrfs-progs is using crc32c.c equivalent to the one found on
linux-2.6.23/lib/libcrc32c.c Since crc32c_le() changed in linux-2.6.23, when
running btrfs v0.13 with older kernels we have a missmatch between the versions
of crc32c_le() from btrfs-progs and libcrc32c in the kernel. This missmatch
causes a bug when using btrfs on big endian machines.
Solution:
btrfs_crc32c() macro that when compiling for kernels older than 2.6.23, does
endianess conversion to parameters and return value of crc32c().
This endianess conversion nullifies the differences in implementation
of crc32c_le().
If kernel 2.6.23 or better, it calls crc32c().
Signed-off-by: Miguel Sousa Filipe <miguel.filipe@gmail.com>
---
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This adds basic O_DIRECT read and write support. In the write case, we
just do a normal buffered write followed by a cache flush. O_DIRECT +
O_SYNC are required to trigger metadata syncs.
In the read case, there is a basic btrfs_get_block call for use by
the generic O_DIRECT code. This does honor multi-volume mapping rules
but it skips all checksumming.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before it was done by the bio end_io routine, the work queue code is able
to scale much better with faster IO subsystems.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, metadata checksumming was done by the callers of read_tree_block,
which would set EXTENT_CSUM bits in the extent tree to show that a given
range of pages was already checksummed and didn't need to be verified
again.
But, those bits could go away via try_to_releasepage, and the end
result was bogus checksum failures on pages that never left the cache.
The new code validates checksums when the page is read. It is a little
tricky because metadata blocks can span pages and a single read may
end up going via multiple bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When a block is freed, it can be immediately reused if it is from
the current transaction. But, an extra check is required to make sure
the block had not been written yet. If it were reused after being written,
the transid in the block header might match the transid of the
next time the block was allocated.
The parent node records the transaction ID of the block it is pointing to,
and this is used as part of validating the block on reads. So, there
can only be one version of a block per transaction.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Checksums were only verified by btrfs_read_tree_block, which meant the
functions to probe the page cache for blocks were not validating checksums.
Normally this is fine because the buffers will only be in cache if they
have already been validated.
But, there is a window while the buffer is being read from disk where
it could be up to date in the cache but not yet verified. This patch
makes sure all buffers go through checksum verification before they
are used.
This is safer, and it prevents modification of buffers before they go
through the csum code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There was an optimization to drop the fs_mutex when doing snapshot deletion
reads, but this can lead to false positives on checksumming errors. Keep
the lock for now.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In btrfs_name_hash, Local variable 'buf' is declared as
__u32 buf[2];
but we then try to do this:
buf[0] = 0x67452301;
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
Oops. Fix buf to be the proper size.
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows detection of blocks that have already been written in the
running transaction so they can be recowed instead of modified again.
It is step one in trusting the transid field of the block pointers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Here's a patch against the unstable tree that gets the code to build
against Linus's current tree (2.6.24-git12). This is needed as the
kobject/kset api has changed there.
I tried to make the smallest changes needed, and it builds and loads
successfully, but I don't have a btrfs volume anywhere (yet) to try to
see if things still work properly :)
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we checkum file data during writepage, the checksumming is done one
page at a time, making it difficult to do bulk metadata modifications
to insert checksums for large ranges of the file at once.
This patch changes btrfs to checksum on a per-bio basis instead. The
bios are checksummed before they are handed off to the block layer, so
each bio is contiguous and only has pages from the same inode.
Checksumming on a bio basis allows us to insert and modify the file
checksum items in large groups. It also allows the checksumming to
be done more easily by async worker threads.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Yan Zheng noticed that we don't clear the extent state tree dirty and delalloc
bits when we clear the dirty bits on the page during file write.
This leads to csum errors later on.
Signed-off-by: Chris Mason <chris.mason@oracle.com>