/* * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver * * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include "sdhci-pltfm.h" #define CORE_MCI_VERSION 0x50 #define CORE_VERSION_MAJOR_SHIFT 28 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT) #define CORE_VERSION_MINOR_MASK 0xff #define CORE_MCI_GENERICS 0x70 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29) #define CORE_HC_MODE 0x78 #define HC_MODE_EN 0x1 #define CORE_POWER 0x0 #define CORE_SW_RST BIT(7) #define FF_CLK_SW_RST_DIS BIT(13) #define CORE_PWRCTL_STATUS 0xdc #define CORE_PWRCTL_MASK 0xe0 #define CORE_PWRCTL_CLEAR 0xe4 #define CORE_PWRCTL_CTL 0xe8 #define CORE_PWRCTL_BUS_OFF BIT(0) #define CORE_PWRCTL_BUS_ON BIT(1) #define CORE_PWRCTL_IO_LOW BIT(2) #define CORE_PWRCTL_IO_HIGH BIT(3) #define CORE_PWRCTL_BUS_SUCCESS BIT(0) #define CORE_PWRCTL_IO_SUCCESS BIT(2) #define REQ_BUS_OFF BIT(0) #define REQ_BUS_ON BIT(1) #define REQ_IO_LOW BIT(2) #define REQ_IO_HIGH BIT(3) #define INT_MASK 0xf #define MAX_PHASES 16 #define CORE_DLL_LOCK BIT(7) #define CORE_DDR_DLL_LOCK BIT(11) #define CORE_DLL_EN BIT(16) #define CORE_CDR_EN BIT(17) #define CORE_CK_OUT_EN BIT(18) #define CORE_CDR_EXT_EN BIT(19) #define CORE_DLL_PDN BIT(29) #define CORE_DLL_RST BIT(30) #define CORE_DLL_CONFIG 0x100 #define CORE_CMD_DAT_TRACK_SEL BIT(0) #define CORE_DLL_STATUS 0x108 #define CORE_DLL_CONFIG_2 0x1b4 #define CORE_DDR_CAL_EN BIT(0) #define CORE_FLL_CYCLE_CNT BIT(18) #define CORE_DLL_CLOCK_DISABLE BIT(21) #define CORE_VENDOR_SPEC 0x10c #define CORE_VENDOR_SPEC_POR_VAL 0xa1c #define CORE_CLK_PWRSAVE BIT(1) #define CORE_HC_MCLK_SEL_DFLT (2 << 8) #define CORE_HC_MCLK_SEL_HS400 (3 << 8) #define CORE_HC_MCLK_SEL_MASK (3 << 8) #define CORE_IO_PAD_PWR_SWITCH_EN (1 << 15) #define CORE_IO_PAD_PWR_SWITCH (1 << 16) #define CORE_HC_SELECT_IN_EN BIT(18) #define CORE_HC_SELECT_IN_HS400 (6 << 19) #define CORE_HC_SELECT_IN_MASK (7 << 19) #define CORE_3_0V_SUPPORT (1 << 25) #define CORE_1_8V_SUPPORT (1 << 26) #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT) #define CORE_CSR_CDC_CTLR_CFG0 0x130 #define CORE_SW_TRIG_FULL_CALIB BIT(16) #define CORE_HW_AUTOCAL_ENA BIT(17) #define CORE_CSR_CDC_CTLR_CFG1 0x134 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138 #define CORE_TIMER_ENA BIT(16) #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C #define CORE_CSR_CDC_REFCOUNT_CFG 0x140 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144 #define CORE_CDC_OFFSET_CFG 0x14C #define CORE_CSR_CDC_DELAY_CFG 0x150 #define CORE_CDC_SLAVE_DDA_CFG 0x160 #define CORE_CSR_CDC_STATUS0 0x164 #define CORE_CALIBRATION_DONE BIT(0) #define CORE_CDC_ERROR_CODE_MASK 0x7000000 #define CORE_CSR_CDC_GEN_CFG 0x178 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0) #define CORE_CDC_SWITCH_RC_EN BIT(1) #define CORE_DDR_200_CFG 0x184 #define CORE_CDC_T4_DLY_SEL BIT(0) #define CORE_CMDIN_RCLK_EN BIT(1) #define CORE_START_CDC_TRAFFIC BIT(6) #define CORE_VENDOR_SPEC3 0x1b0 #define CORE_PWRSAVE_DLL BIT(3) #define CORE_DDR_CONFIG 0x1b8 #define DDR_CONFIG_POR_VAL 0x80040853 #define CORE_VENDOR_SPEC_CAPABILITIES0 0x11c #define INVALID_TUNING_PHASE -1 #define SDHCI_MSM_MIN_CLOCK 400000 #define CORE_FREQ_100MHZ (100 * 1000 * 1000) #define CDR_SELEXT_SHIFT 20 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT) #define CMUX_SHIFT_PHASE_SHIFT 24 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT) #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50 /* Timeout value to avoid infinite waiting for pwr_irq */ #define MSM_PWR_IRQ_TIMEOUT_MS 5000 struct sdhci_msm_host { struct platform_device *pdev; void __iomem *core_mem; /* MSM SDCC mapped address */ int pwr_irq; /* power irq */ struct clk *bus_clk; /* SDHC bus voter clock */ struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/ struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */ unsigned long clk_rate; struct mmc_host *mmc; bool use_14lpp_dll_reset; bool tuning_done; bool calibration_done; u8 saved_tuning_phase; bool use_cdclp533; u32 curr_pwr_state; u32 curr_io_level; wait_queue_head_t pwr_irq_wait; bool pwr_irq_flag; u32 caps_0; }; static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host, unsigned int clock) { struct mmc_ios ios = host->mmc->ios; /* * The SDHC requires internal clock frequency to be double the * actual clock that will be set for DDR mode. The controller * uses the faster clock(100/400MHz) for some of its parts and * send the actual required clock (50/200MHz) to the card. */ if (ios.timing == MMC_TIMING_UHS_DDR50 || ios.timing == MMC_TIMING_MMC_DDR52 || ios.timing == MMC_TIMING_MMC_HS400 || host->flags & SDHCI_HS400_TUNING) clock *= 2; return clock; } static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); struct mmc_ios curr_ios = host->mmc->ios; struct clk *core_clk = msm_host->bulk_clks[0].clk; int rc; clock = msm_get_clock_rate_for_bus_mode(host, clock); rc = clk_set_rate(core_clk, clock); if (rc) { pr_err("%s: Failed to set clock at rate %u at timing %d\n", mmc_hostname(host->mmc), clock, curr_ios.timing); return; } msm_host->clk_rate = clock; pr_debug("%s: Setting clock at rate %lu at timing %d\n", mmc_hostname(host->mmc), clk_get_rate(core_clk), curr_ios.timing); } /* Platform specific tuning */ static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll) { u32 wait_cnt = 50; u8 ck_out_en; struct mmc_host *mmc = host->mmc; /* Poll for CK_OUT_EN bit. max. poll time = 50us */ ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) & CORE_CK_OUT_EN); while (ck_out_en != poll) { if (--wait_cnt == 0) { dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n", mmc_hostname(mmc), poll); return -ETIMEDOUT; } udelay(1); ck_out_en = !!(readl_relaxed(host->ioaddr + CORE_DLL_CONFIG) & CORE_CK_OUT_EN); } return 0; } static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase) { int rc; static const u8 grey_coded_phase_table[] = { 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4, 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8 }; unsigned long flags; u32 config; struct mmc_host *mmc = host->mmc; if (phase > 0xf) return -EINVAL; spin_lock_irqsave(&host->lock, flags); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN); config |= (CORE_CDR_EXT_EN | CORE_DLL_EN); writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */ rc = msm_dll_poll_ck_out_en(host, 0); if (rc) goto err_out; /* * Write the selected DLL clock output phase (0 ... 15) * to CDR_SELEXT bit field of DLL_CONFIG register. */ config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~CDR_SELEXT_MASK; config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_CK_OUT_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */ rc = msm_dll_poll_ck_out_en(host, 1); if (rc) goto err_out; config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_CDR_EN; config &= ~CORE_CDR_EXT_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); goto out; err_out: dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n", mmc_hostname(mmc), phase); out: spin_unlock_irqrestore(&host->lock, flags); return rc; } /* * Find out the greatest range of consecuitive selected * DLL clock output phases that can be used as sampling * setting for SD3.0 UHS-I card read operation (in SDR104 * timing mode) or for eMMC4.5 card read operation (in * HS400/HS200 timing mode). * Select the 3/4 of the range and configure the DLL with the * selected DLL clock output phase. */ static int msm_find_most_appropriate_phase(struct sdhci_host *host, u8 *phase_table, u8 total_phases) { int ret; u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} }; u8 phases_per_row[MAX_PHASES] = { 0 }; int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0; int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0; bool phase_0_found = false, phase_15_found = false; struct mmc_host *mmc = host->mmc; if (!total_phases || (total_phases > MAX_PHASES)) { dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n", mmc_hostname(mmc), total_phases); return -EINVAL; } for (cnt = 0; cnt < total_phases; cnt++) { ranges[row_index][col_index] = phase_table[cnt]; phases_per_row[row_index] += 1; col_index++; if ((cnt + 1) == total_phases) { continue; /* check if next phase in phase_table is consecutive or not */ } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) { row_index++; col_index = 0; } } if (row_index >= MAX_PHASES) return -EINVAL; /* Check if phase-0 is present in first valid window? */ if (!ranges[0][0]) { phase_0_found = true; phase_0_raw_index = 0; /* Check if cycle exist between 2 valid windows */ for (cnt = 1; cnt <= row_index; cnt++) { if (phases_per_row[cnt]) { for (i = 0; i < phases_per_row[cnt]; i++) { if (ranges[cnt][i] == 15) { phase_15_found = true; phase_15_raw_index = cnt; break; } } } } } /* If 2 valid windows form cycle then merge them as single window */ if (phase_0_found && phase_15_found) { /* number of phases in raw where phase 0 is present */ u8 phases_0 = phases_per_row[phase_0_raw_index]; /* number of phases in raw where phase 15 is present */ u8 phases_15 = phases_per_row[phase_15_raw_index]; if (phases_0 + phases_15 >= MAX_PHASES) /* * If there are more than 1 phase windows then total * number of phases in both the windows should not be * more than or equal to MAX_PHASES. */ return -EINVAL; /* Merge 2 cyclic windows */ i = phases_15; for (cnt = 0; cnt < phases_0; cnt++) { ranges[phase_15_raw_index][i] = ranges[phase_0_raw_index][cnt]; if (++i >= MAX_PHASES) break; } phases_per_row[phase_0_raw_index] = 0; phases_per_row[phase_15_raw_index] = phases_15 + phases_0; } for (cnt = 0; cnt <= row_index; cnt++) { if (phases_per_row[cnt] > curr_max) { curr_max = phases_per_row[cnt]; selected_row_index = cnt; } } i = (curr_max * 3) / 4; if (i) i--; ret = ranges[selected_row_index][i]; if (ret >= MAX_PHASES) { ret = -EINVAL; dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n", mmc_hostname(mmc), ret); } return ret; } static inline void msm_cm_dll_set_freq(struct sdhci_host *host) { u32 mclk_freq = 0, config; /* Program the MCLK value to MCLK_FREQ bit field */ if (host->clock <= 112000000) mclk_freq = 0; else if (host->clock <= 125000000) mclk_freq = 1; else if (host->clock <= 137000000) mclk_freq = 2; else if (host->clock <= 150000000) mclk_freq = 3; else if (host->clock <= 162000000) mclk_freq = 4; else if (host->clock <= 175000000) mclk_freq = 5; else if (host->clock <= 187000000) mclk_freq = 6; else if (host->clock <= 200000000) mclk_freq = 7; config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~CMUX_SHIFT_PHASE_MASK; config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); } /* Initialize the DLL (Programmable Delay Line) */ static int msm_init_cm_dll(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); int wait_cnt = 50; unsigned long flags; u32 config; spin_lock_irqsave(&host->lock, flags); /* * Make sure that clock is always enabled when DLL * tuning is in progress. Keeping PWRSAVE ON may * turn off the clock. */ config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config &= ~CORE_CLK_PWRSAVE; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); if (msm_host->use_14lpp_dll_reset) { config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~CORE_CK_OUT_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2); config |= CORE_DLL_CLOCK_DISABLE; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2); } config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_DLL_RST; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_DLL_PDN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); msm_cm_dll_set_freq(host); if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk)) { u32 mclk_freq = 0; config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2); config &= CORE_FLL_CYCLE_CNT; if (config) mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8), clk_get_rate(msm_host->xo_clk)); else mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4), clk_get_rate(msm_host->xo_clk)); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2); config &= ~(0xFF << 10); config |= mclk_freq << 10; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2); /* wait for 5us before enabling DLL clock */ udelay(5); } config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~CORE_DLL_RST; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config &= ~CORE_DLL_PDN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); if (msm_host->use_14lpp_dll_reset) { msm_cm_dll_set_freq(host); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2); config &= ~CORE_DLL_CLOCK_DISABLE; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2); } config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_DLL_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_CK_OUT_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */ while (!(readl_relaxed(host->ioaddr + CORE_DLL_STATUS) & CORE_DLL_LOCK)) { /* max. wait for 50us sec for LOCK bit to be set */ if (--wait_cnt == 0) { dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n", mmc_hostname(mmc)); spin_unlock_irqrestore(&host->lock, flags); return -ETIMEDOUT; } udelay(1); } spin_unlock_irqrestore(&host->lock, flags); return 0; } static void msm_hc_select_default(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); u32 config; if (!msm_host->use_cdclp533) { config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3); config &= ~CORE_PWRSAVE_DLL; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3); } config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config &= ~CORE_HC_MCLK_SEL_MASK; config |= CORE_HC_MCLK_SEL_DFLT; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); /* * Disable HC_SELECT_IN to be able to use the UHS mode select * configuration from Host Control2 register for all other * modes. * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field * in VENDOR_SPEC_FUNC */ config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config &= ~CORE_HC_SELECT_IN_EN; config &= ~CORE_HC_SELECT_IN_MASK; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); /* * Make sure above writes impacting free running MCLK are completed * before changing the clk_rate at GCC. */ wmb(); } static void msm_hc_select_hs400(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); struct mmc_ios ios = host->mmc->ios; u32 config, dll_lock; int rc; /* Select the divided clock (free running MCLK/2) */ config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config &= ~CORE_HC_MCLK_SEL_MASK; config |= CORE_HC_MCLK_SEL_HS400; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); /* * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC * register */ if ((msm_host->tuning_done || ios.enhanced_strobe) && !msm_host->calibration_done) { config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config |= CORE_HC_SELECT_IN_HS400; config |= CORE_HC_SELECT_IN_EN; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); } if (!msm_host->clk_rate && !msm_host->use_cdclp533) { /* * Poll on DLL_LOCK or DDR_DLL_LOCK bits in * CORE_DLL_STATUS to be set. This should get set * within 15 us at 200 MHz. */ rc = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS, dll_lock, (dll_lock & (CORE_DLL_LOCK | CORE_DDR_DLL_LOCK)), 10, 1000); if (rc == -ETIMEDOUT) pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n", mmc_hostname(host->mmc), dll_lock); } /* * Make sure above writes impacting free running MCLK are completed * before changing the clk_rate at GCC. */ wmb(); } /* * sdhci_msm_hc_select_mode :- In general all timing modes are * controlled via UHS mode select in Host Control2 register. * eMMC specific HS200/HS400 doesn't have their respective modes * defined here, hence we use these values. * * HS200 - SDR104 (Since they both are equivalent in functionality) * HS400 - This involves multiple configurations * Initially SDR104 - when tuning is required as HS200 * Then when switching to DDR @ 400MHz (HS400) we use * the vendor specific HC_SELECT_IN to control the mode. * * In addition to controlling the modes we also need to select the * correct input clock for DLL depending on the mode. * * HS400 - divided clock (free running MCLK/2) * All other modes - default (free running MCLK) */ static void sdhci_msm_hc_select_mode(struct sdhci_host *host) { struct mmc_ios ios = host->mmc->ios; if (ios.timing == MMC_TIMING_MMC_HS400 || host->flags & SDHCI_HS400_TUNING) msm_hc_select_hs400(host); else msm_hc_select_default(host); } static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); u32 config, calib_done; int ret; pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); /* * Retuning in HS400 (DDR mode) will fail, just reset the * tuning block and restore the saved tuning phase. */ ret = msm_init_cm_dll(host); if (ret) goto out; /* Set the selected phase in delay line hw block */ ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); if (ret) goto out; config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_CMD_DAT_TRACK_SEL; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG); config &= ~CORE_CDC_T4_DLY_SEL; writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG); config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); config &= ~CORE_CDC_SWITCH_BYPASS_OFF; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG); config |= CORE_CDC_SWITCH_RC_EN; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG); config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG); config &= ~CORE_START_CDC_TRAFFIC; writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG); /* Perform CDC Register Initialization Sequence */ writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1); writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1); writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG); writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG); writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG); writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG); writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG); /* CDC HW Calibration */ config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config |= CORE_SW_TRIG_FULL_CALIB; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config &= ~CORE_SW_TRIG_FULL_CALIB; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config |= CORE_HW_AUTOCAL_ENA; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0); config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); config |= CORE_TIMER_ENA; writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0); ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0, calib_done, (calib_done & CORE_CALIBRATION_DONE), 1, 50); if (ret == -ETIMEDOUT) { pr_err("%s: %s: CDC calibration was not completed\n", mmc_hostname(host->mmc), __func__); goto out; } ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0) & CORE_CDC_ERROR_CODE_MASK; if (ret) { pr_err("%s: %s: CDC error code %d\n", mmc_hostname(host->mmc), __func__, ret); ret = -EINVAL; goto out; } config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG); config |= CORE_START_CDC_TRAFFIC; writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG); out: pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host) { struct mmc_host *mmc = host->mmc; u32 dll_status, config; int ret; pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); /* * Currently the CORE_DDR_CONFIG register defaults to desired * configuration on reset. Currently reprogramming the power on * reset (POR) value in case it might have been modified by * bootloaders. In the future, if this changes, then the desired * values will need to be programmed appropriately. */ writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + CORE_DDR_CONFIG); if (mmc->ios.enhanced_strobe) { config = readl_relaxed(host->ioaddr + CORE_DDR_200_CFG); config |= CORE_CMDIN_RCLK_EN; writel_relaxed(config, host->ioaddr + CORE_DDR_200_CFG); } config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG_2); config |= CORE_DDR_CAL_EN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG_2); ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_DLL_STATUS, dll_status, (dll_status & CORE_DDR_DLL_LOCK), 10, 1000); if (ret == -ETIMEDOUT) { pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n", mmc_hostname(host->mmc), __func__); goto out; } config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC3); config |= CORE_PWRSAVE_DLL; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC3); /* * Drain writebuffer to ensure above DLL calibration * and PWRSAVE DLL is enabled. */ wmb(); out: pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); struct mmc_host *mmc = host->mmc; int ret; u32 config; pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__); /* * Retuning in HS400 (DDR mode) will fail, just reset the * tuning block and restore the saved tuning phase. */ ret = msm_init_cm_dll(host); if (ret) goto out; if (!mmc->ios.enhanced_strobe) { /* Set the selected phase in delay line hw block */ ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase); if (ret) goto out; config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_CMD_DAT_TRACK_SEL; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); } if (msm_host->use_cdclp533) ret = sdhci_msm_cdclp533_calibration(host); else ret = sdhci_msm_cm_dll_sdc4_calibration(host); out: pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc), __func__, ret); return ret; } static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct sdhci_host *host = mmc_priv(mmc); int tuning_seq_cnt = 3; u8 phase, tuned_phases[16], tuned_phase_cnt = 0; int rc; struct mmc_ios ios = host->mmc->ios; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); /* * Tuning is required for SDR104, HS200 and HS400 cards and * if clock frequency is greater than 100MHz in these modes. */ if (host->clock <= CORE_FREQ_100MHZ || !(ios.timing == MMC_TIMING_MMC_HS400 || ios.timing == MMC_TIMING_MMC_HS200 || ios.timing == MMC_TIMING_UHS_SDR104)) return 0; /* * For HS400 tuning in HS200 timing requires: * - select MCLK/2 in VENDOR_SPEC * - program MCLK to 400MHz (or nearest supported) in GCC */ if (host->flags & SDHCI_HS400_TUNING) { sdhci_msm_hc_select_mode(host); msm_set_clock_rate_for_bus_mode(host, ios.clock); host->flags &= ~SDHCI_HS400_TUNING; } retry: /* First of all reset the tuning block */ rc = msm_init_cm_dll(host); if (rc) return rc; phase = 0; do { /* Set the phase in delay line hw block */ rc = msm_config_cm_dll_phase(host, phase); if (rc) return rc; msm_host->saved_tuning_phase = phase; rc = mmc_send_tuning(mmc, opcode, NULL); if (!rc) { /* Tuning is successful at this tuning point */ tuned_phases[tuned_phase_cnt++] = phase; dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n", mmc_hostname(mmc), phase); } } while (++phase < ARRAY_SIZE(tuned_phases)); if (tuned_phase_cnt) { rc = msm_find_most_appropriate_phase(host, tuned_phases, tuned_phase_cnt); if (rc < 0) return rc; else phase = rc; /* * Finally set the selected phase in delay * line hw block. */ rc = msm_config_cm_dll_phase(host, phase); if (rc) return rc; dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n", mmc_hostname(mmc), phase); } else { if (--tuning_seq_cnt) goto retry; /* Tuning failed */ dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n", mmc_hostname(mmc)); rc = -EIO; } if (!rc) msm_host->tuning_done = true; return rc; } /* * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation. * This needs to be done for both tuning and enhanced_strobe mode. * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz * fixed feedback clock is used. */ static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); int ret; if (host->clock > CORE_FREQ_100MHZ && (msm_host->tuning_done || ios->enhanced_strobe) && !msm_host->calibration_done) { ret = sdhci_msm_hs400_dll_calibration(host); if (!ret) msm_host->calibration_done = true; else pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n", mmc_hostname(host->mmc), ret); } } static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host, unsigned int uhs) { struct mmc_host *mmc = host->mmc; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); u16 ctrl_2; u32 config; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; switch (uhs) { case MMC_TIMING_UHS_SDR12: ctrl_2 |= SDHCI_CTRL_UHS_SDR12; break; case MMC_TIMING_UHS_SDR25: ctrl_2 |= SDHCI_CTRL_UHS_SDR25; break; case MMC_TIMING_UHS_SDR50: ctrl_2 |= SDHCI_CTRL_UHS_SDR50; break; case MMC_TIMING_MMC_HS400: case MMC_TIMING_MMC_HS200: case MMC_TIMING_UHS_SDR104: ctrl_2 |= SDHCI_CTRL_UHS_SDR104; break; case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: ctrl_2 |= SDHCI_CTRL_UHS_DDR50; break; } /* * When clock frequency is less than 100MHz, the feedback clock must be * provided and DLL must not be used so that tuning can be skipped. To * provide feedback clock, the mode selection can be any value less * than 3'b011 in bits [2:0] of HOST CONTROL2 register. */ if (host->clock <= CORE_FREQ_100MHZ) { if (uhs == MMC_TIMING_MMC_HS400 || uhs == MMC_TIMING_MMC_HS200 || uhs == MMC_TIMING_UHS_SDR104) ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; /* * DLL is not required for clock <= 100MHz * Thus, make sure DLL it is disabled when not required */ config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_DLL_RST; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); config = readl_relaxed(host->ioaddr + CORE_DLL_CONFIG); config |= CORE_DLL_PDN; writel_relaxed(config, host->ioaddr + CORE_DLL_CONFIG); /* * The DLL needs to be restored and CDCLP533 recalibrated * when the clock frequency is set back to 400MHz. */ msm_host->calibration_done = false; } dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n", mmc_hostname(host->mmc), host->clock, uhs, ctrl_2); sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); if (mmc->ios.timing == MMC_TIMING_MMC_HS400) sdhci_msm_hs400(host, &mmc->ios); } static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host) { init_waitqueue_head(&msm_host->pwr_irq_wait); } static inline void sdhci_msm_complete_pwr_irq_wait( struct sdhci_msm_host *msm_host) { wake_up(&msm_host->pwr_irq_wait); } /* * sdhci_msm_check_power_status API should be called when registers writes * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens. * To what state the register writes will change the IO lines should be passed * as the argument req_type. This API will check whether the IO line's state * is already the expected state and will wait for power irq only if * power irq is expected to be trigerred based on the current IO line state * and expected IO line state. */ static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); bool done = false; u32 val; pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n", mmc_hostname(host->mmc), __func__, req_type, msm_host->curr_pwr_state, msm_host->curr_io_level); /* * The power interrupt will not be generated for signal voltage * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set. */ val = readl(msm_host->core_mem + CORE_MCI_GENERICS); if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) && !(val & SWITCHABLE_SIGNALING_VOLTAGE)) { return; } /* * The IRQ for request type IO High/LOW will be generated when - * there is a state change in 1.8V enable bit (bit 3) of * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0 * which indicates 3.3V IO voltage. So, when MMC core layer tries * to set it to 3.3V before card detection happens, the * IRQ doesn't get triggered as there is no state change in this bit. * The driver already handles this case by changing the IO voltage * level to high as part of controller power up sequence. Hence, check * for host->pwr to handle a case where IO voltage high request is * issued even before controller power up. */ if ((req_type & REQ_IO_HIGH) && !host->pwr) { pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n", mmc_hostname(host->mmc), req_type); return; } if ((req_type & msm_host->curr_pwr_state) || (req_type & msm_host->curr_io_level)) done = true; /* * This is needed here to handle cases where register writes will * not change the current bus state or io level of the controller. * In this case, no power irq will be triggerred and we should * not wait. */ if (!done) { if (!wait_event_timeout(msm_host->pwr_irq_wait, msm_host->pwr_irq_flag, msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS))) dev_warn(&msm_host->pdev->dev, "%s: pwr_irq for req: (%d) timed out\n", mmc_hostname(host->mmc), req_type); } pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc), __func__, req_type); } static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n", mmc_hostname(host->mmc), readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS), readl_relaxed(msm_host->core_mem + CORE_PWRCTL_MASK), readl_relaxed(msm_host->core_mem + CORE_PWRCTL_CTL)); } static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); u32 irq_status, irq_ack = 0; int retry = 10; u32 pwr_state = 0, io_level = 0; u32 config; irq_status = readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS); irq_status &= INT_MASK; writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR); /* * There is a rare HW scenario where the first clear pulse could be * lost when actual reset and clear/read of status register is * happening at a time. Hence, retry for at least 10 times to make * sure status register is cleared. Otherwise, this will result in * a spurious power IRQ resulting in system instability. */ while (irq_status & readl_relaxed(msm_host->core_mem + CORE_PWRCTL_STATUS)) { if (retry == 0) { pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n", mmc_hostname(host->mmc), irq_status); sdhci_msm_dump_pwr_ctrl_regs(host); WARN_ON(1); break; } writel_relaxed(irq_status, msm_host->core_mem + CORE_PWRCTL_CLEAR); retry--; udelay(10); } /* Handle BUS ON/OFF*/ if (irq_status & CORE_PWRCTL_BUS_ON) { pwr_state = REQ_BUS_ON; io_level = REQ_IO_HIGH; irq_ack |= CORE_PWRCTL_BUS_SUCCESS; } if (irq_status & CORE_PWRCTL_BUS_OFF) { pwr_state = REQ_BUS_OFF; io_level = REQ_IO_LOW; irq_ack |= CORE_PWRCTL_BUS_SUCCESS; } /* Handle IO LOW/HIGH */ if (irq_status & CORE_PWRCTL_IO_LOW) { io_level = REQ_IO_LOW; irq_ack |= CORE_PWRCTL_IO_SUCCESS; } if (irq_status & CORE_PWRCTL_IO_HIGH) { io_level = REQ_IO_HIGH; irq_ack |= CORE_PWRCTL_IO_SUCCESS; } /* * The driver has to acknowledge the interrupt, switch voltages and * report back if it succeded or not to this register. The voltage * switches are handled by the sdhci core, so just report success. */ writel_relaxed(irq_ack, msm_host->core_mem + CORE_PWRCTL_CTL); /* * If we don't have info regarding the voltage levels supported by * regulators, don't change the IO PAD PWR SWITCH. */ if (msm_host->caps_0 & CORE_VOLT_SUPPORT) { u32 new_config; /* * We should unset IO PAD PWR switch only if the register write * can set IO lines high and the regulator also switches to 3 V. * Else, we should keep the IO PAD PWR switch set. * This is applicable to certain targets where eMMC vccq supply * is only 1.8V. In such targets, even during REQ_IO_HIGH, the * IO PAD PWR switch must be kept set to reflect actual * regulator voltage. This way, during initialization of * controllers with only 1.8V, we will set the IO PAD bit * without waiting for a REQ_IO_LOW. */ config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); new_config = config; if ((io_level & REQ_IO_HIGH) && (msm_host->caps_0 & CORE_3_0V_SUPPORT)) new_config &= ~CORE_IO_PAD_PWR_SWITCH; else if ((io_level & REQ_IO_LOW) || (msm_host->caps_0 & CORE_1_8V_SUPPORT)) new_config |= CORE_IO_PAD_PWR_SWITCH; if (config ^ new_config) writel_relaxed(new_config, host->ioaddr + CORE_VENDOR_SPEC); } if (pwr_state) msm_host->curr_pwr_state = pwr_state; if (io_level) msm_host->curr_io_level = io_level; pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n", mmc_hostname(msm_host->mmc), __func__, irq, irq_status, irq_ack); } static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data) { struct sdhci_host *host = (struct sdhci_host *)data; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); sdhci_msm_handle_pwr_irq(host, irq); msm_host->pwr_irq_flag = 1; sdhci_msm_complete_pwr_irq_wait(msm_host); return IRQ_HANDLED; } static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); struct clk *core_clk = msm_host->bulk_clks[0].clk; return clk_round_rate(core_clk, ULONG_MAX); } static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host) { return SDHCI_MSM_MIN_CLOCK; } /** * __sdhci_msm_set_clock - sdhci_msm clock control. * * Description: * MSM controller does not use internal divider and * instead directly control the GCC clock as per * HW recommendation. **/ static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) { u16 clk; /* * Keep actual_clock as zero - * - since there is no divider used so no need of having actual_clock. * - MSM controller uses SDCLK for data timeout calculation. If * actual_clock is zero, host->clock is taken for calculation. */ host->mmc->actual_clock = 0; sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); if (clock == 0) return; /* * MSM controller do not use clock divider. * Thus read SDHCI_CLOCK_CONTROL and only enable * clock with no divider value programmed. */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); sdhci_enable_clk(host, clk); } /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */ static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); if (!clock) { msm_host->clk_rate = clock; goto out; } sdhci_msm_hc_select_mode(host); msm_set_clock_rate_for_bus_mode(host, clock); out: __sdhci_msm_set_clock(host, clock); } /* * Platform specific register write functions. This is so that, if any * register write needs to be followed up by platform specific actions, * they can be added here. These functions can go to sleep when writes * to certain registers are done. * These functions are relying on sdhci_set_ios not using spinlock. */ static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); u32 req_type = 0; switch (reg) { case SDHCI_HOST_CONTROL2: req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW : REQ_IO_HIGH; break; case SDHCI_SOFTWARE_RESET: if (host->pwr && (val & SDHCI_RESET_ALL)) req_type = REQ_BUS_OFF; break; case SDHCI_POWER_CONTROL: req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON; break; } if (req_type) { msm_host->pwr_irq_flag = 0; /* * Since this register write may trigger a power irq, ensure * all previous register writes are complete by this point. */ mb(); } return req_type; } /* This function may sleep*/ static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg) { u32 req_type = 0; req_type = __sdhci_msm_check_write(host, val, reg); writew_relaxed(val, host->ioaddr + reg); if (req_type) sdhci_msm_check_power_status(host, req_type); } /* This function may sleep*/ static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg) { u32 req_type = 0; req_type = __sdhci_msm_check_write(host, val, reg); writeb_relaxed(val, host->ioaddr + reg); if (req_type) sdhci_msm_check_power_status(host, req_type); } static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host) { struct mmc_host *mmc = msm_host->mmc; struct regulator *supply = mmc->supply.vqmmc; u32 caps = 0, config; struct sdhci_host *host = mmc_priv(mmc); if (!IS_ERR(mmc->supply.vqmmc)) { if (regulator_is_supported_voltage(supply, 1700000, 1950000)) caps |= CORE_1_8V_SUPPORT; if (regulator_is_supported_voltage(supply, 2700000, 3600000)) caps |= CORE_3_0V_SUPPORT; if (!caps) pr_warn("%s: 1.8/3V not supported for vqmmc\n", mmc_hostname(mmc)); } if (caps) { /* * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH * bit can be used as required later on. */ u32 io_level = msm_host->curr_io_level; config = readl_relaxed(host->ioaddr + CORE_VENDOR_SPEC); config |= CORE_IO_PAD_PWR_SWITCH_EN; if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT)) config &= ~CORE_IO_PAD_PWR_SWITCH; else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT)) config |= CORE_IO_PAD_PWR_SWITCH; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC); } msm_host->caps_0 |= caps; pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps); } static const struct of_device_id sdhci_msm_dt_match[] = { { .compatible = "qcom,sdhci-msm-v4" }, {}, }; MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match); static const struct sdhci_ops sdhci_msm_ops = { .reset = sdhci_reset, .set_clock = sdhci_msm_set_clock, .get_min_clock = sdhci_msm_get_min_clock, .get_max_clock = sdhci_msm_get_max_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = sdhci_msm_set_uhs_signaling, .write_w = sdhci_msm_writew, .write_b = sdhci_msm_writeb, }; static const struct sdhci_pltfm_data sdhci_msm_pdata = { .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | SDHCI_QUIRK_NO_CARD_NO_RESET | SDHCI_QUIRK_SINGLE_POWER_WRITE | SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &sdhci_msm_ops, }; static int sdhci_msm_probe(struct platform_device *pdev) { struct sdhci_host *host; struct sdhci_pltfm_host *pltfm_host; struct sdhci_msm_host *msm_host; struct resource *core_memres; struct clk *clk; int ret; u16 host_version, core_minor; u32 core_version, config; u8 core_major; host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host)); if (IS_ERR(host)) return PTR_ERR(host); host->sdma_boundary = 0; pltfm_host = sdhci_priv(host); msm_host = sdhci_pltfm_priv(pltfm_host); msm_host->mmc = host->mmc; msm_host->pdev = pdev; ret = mmc_of_parse(host->mmc); if (ret) goto pltfm_free; sdhci_get_of_property(pdev); msm_host->saved_tuning_phase = INVALID_TUNING_PHASE; /* Setup SDCC bus voter clock. */ msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus"); if (!IS_ERR(msm_host->bus_clk)) { /* Vote for max. clk rate for max. performance */ ret = clk_set_rate(msm_host->bus_clk, INT_MAX); if (ret) goto pltfm_free; ret = clk_prepare_enable(msm_host->bus_clk); if (ret) goto pltfm_free; } /* Setup main peripheral bus clock */ clk = devm_clk_get(&pdev->dev, "iface"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret); goto bus_clk_disable; } msm_host->bulk_clks[1].clk = clk; /* Setup SDC MMC clock */ clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret); goto bus_clk_disable; } msm_host->bulk_clks[0].clk = clk; /* Vote for maximum clock rate for maximum performance */ ret = clk_set_rate(clk, INT_MAX); if (ret) dev_warn(&pdev->dev, "core clock boost failed\n"); clk = devm_clk_get(&pdev->dev, "cal"); if (IS_ERR(clk)) clk = NULL; msm_host->bulk_clks[2].clk = clk; clk = devm_clk_get(&pdev->dev, "sleep"); if (IS_ERR(clk)) clk = NULL; msm_host->bulk_clks[3].clk = clk; ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), msm_host->bulk_clks); if (ret) goto bus_clk_disable; /* * xo clock is needed for FLL feature of cm_dll. * In case if xo clock is not mentioned in DT, warn and proceed. */ msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo"); if (IS_ERR(msm_host->xo_clk)) { ret = PTR_ERR(msm_host->xo_clk); dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret); } core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1); msm_host->core_mem = devm_ioremap_resource(&pdev->dev, core_memres); if (IS_ERR(msm_host->core_mem)) { dev_err(&pdev->dev, "Failed to remap registers\n"); ret = PTR_ERR(msm_host->core_mem); goto clk_disable; } /* Reset the vendor spec register to power on reset state */ writel_relaxed(CORE_VENDOR_SPEC_POR_VAL, host->ioaddr + CORE_VENDOR_SPEC); /* Set HC_MODE_EN bit in HC_MODE register */ writel_relaxed(HC_MODE_EN, (msm_host->core_mem + CORE_HC_MODE)); config = readl_relaxed(msm_host->core_mem + CORE_HC_MODE); config |= FF_CLK_SW_RST_DIS; writel_relaxed(config, msm_host->core_mem + CORE_HC_MODE); host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION)); dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n", host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT)); core_version = readl_relaxed(msm_host->core_mem + CORE_MCI_VERSION); core_major = (core_version & CORE_VERSION_MAJOR_MASK) >> CORE_VERSION_MAJOR_SHIFT; core_minor = core_version & CORE_VERSION_MINOR_MASK; dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n", core_version, core_major, core_minor); if (core_major == 1 && core_minor >= 0x42) msm_host->use_14lpp_dll_reset = true; /* * SDCC 5 controller with major version 1, minor version 0x34 and later * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL. */ if (core_major == 1 && core_minor < 0x34) msm_host->use_cdclp533 = true; /* * Support for some capabilities is not advertised by newer * controller versions and must be explicitly enabled. */ if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) { config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES); config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT; writel_relaxed(config, host->ioaddr + CORE_VENDOR_SPEC_CAPABILITIES0); } /* * Power on reset state may trigger power irq if previous status of * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq * interrupt in GIC, any pending power irq interrupt should be * acknowledged. Otherwise power irq interrupt handler would be * fired prematurely. */ sdhci_msm_handle_pwr_irq(host, 0); /* * Ensure that above writes are propogated before interrupt enablement * in GIC. */ mb(); /* Setup IRQ for handling power/voltage tasks with PMIC */ msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq"); if (msm_host->pwr_irq < 0) { dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n", msm_host->pwr_irq); ret = msm_host->pwr_irq; goto clk_disable; } sdhci_msm_init_pwr_irq_wait(msm_host); /* Enable pwr irq interrupts */ writel_relaxed(INT_MASK, msm_host->core_mem + CORE_PWRCTL_MASK); ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL, sdhci_msm_pwr_irq, IRQF_ONESHOT, dev_name(&pdev->dev), host); if (ret) { dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret); goto clk_disable; } pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, MSM_MMC_AUTOSUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&pdev->dev); host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning; ret = sdhci_add_host(host); if (ret) goto pm_runtime_disable; sdhci_msm_set_regulator_caps(msm_host); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; pm_runtime_disable: pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); clk_disable: clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), msm_host->bulk_clks); bus_clk_disable: if (!IS_ERR(msm_host->bus_clk)) clk_disable_unprepare(msm_host->bus_clk); pltfm_free: sdhci_pltfm_free(pdev); return ret; } static int sdhci_msm_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) == 0xffffffff); sdhci_remove_host(host, dead); pm_runtime_get_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), msm_host->bulk_clks); if (!IS_ERR(msm_host->bus_clk)) clk_disable_unprepare(msm_host->bus_clk); sdhci_pltfm_free(pdev); return 0; } #ifdef CONFIG_PM static int sdhci_msm_runtime_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks), msm_host->bulk_clks); return 0; } static int sdhci_msm_runtime_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host); return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks), msm_host->bulk_clks); } #endif static const struct dev_pm_ops sdhci_msm_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend, sdhci_msm_runtime_resume, NULL) }; static struct platform_driver sdhci_msm_driver = { .probe = sdhci_msm_probe, .remove = sdhci_msm_remove, .driver = { .name = "sdhci_msm", .of_match_table = sdhci_msm_dt_match, .pm = &sdhci_msm_pm_ops, }, }; module_platform_driver(sdhci_msm_driver); MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver"); MODULE_LICENSE("GPL v2");