/* * mm/truncate.c - code for taking down pages from address_spaces * * Copyright (C) 2002, Linus Torvalds * * 10Sep2002 akpm@zip.com.au * Initial version. */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/pagemap.h> #include <linux/pagevec.h> #include <linux/buffer_head.h> /* grr. try_to_release_page, do_invalidatepage */ static inline void truncate_partial_page(struct page *page, unsigned partial) { memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial); if (PagePrivate(page)) do_invalidatepage(page, partial); } /* * If truncate cannot remove the fs-private metadata from the page, the page * becomes anonymous. It will be left on the LRU and may even be mapped into * user pagetables if we're racing with filemap_nopage(). * * We need to bale out if page->mapping is no longer equal to the original * mapping. This happens a) when the VM reclaimed the page while we waited on * its lock, b) when a concurrent invalidate_inode_pages got there first and * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. */ static void truncate_complete_page(struct address_space *mapping, struct page *page) { if (page->mapping != mapping) return; if (PagePrivate(page)) do_invalidatepage(page, 0); clear_page_dirty(page); ClearPageUptodate(page); ClearPageMappedToDisk(page); remove_from_page_cache(page); page_cache_release(page); /* pagecache ref */ } /* * This is for invalidate_inode_pages(). That function can be called at * any time, and is not supposed to throw away dirty pages. But pages can * be marked dirty at any time too. So we re-check the dirtiness inside * ->tree_lock. That provides exclusion against the __set_page_dirty * functions. * * Returns non-zero if the page was successfully invalidated. */ static int invalidate_complete_page(struct address_space *mapping, struct page *page) { if (page->mapping != mapping) return 0; if (PagePrivate(page) && !try_to_release_page(page, 0)) return 0; write_lock_irq(&mapping->tree_lock); if (PageDirty(page)) goto failed; if (page_count(page) != 2) /* caller's ref + pagecache ref */ goto failed; BUG_ON(PagePrivate(page)); __remove_from_page_cache(page); write_unlock_irq(&mapping->tree_lock); ClearPageUptodate(page); page_cache_release(page); /* pagecache ref */ return 1; failed: write_unlock_irq(&mapping->tree_lock); return 0; } /** * truncate_inode_pages - truncate range of pages specified by start and * end byte offsets * @mapping: mapping to truncate * @lstart: offset from which to truncate * @lend: offset to which to truncate * * Truncate the page cache, removing the pages that are between * specified offsets (and zeroing out partial page * (if lstart is not page aligned)). * * Truncate takes two passes - the first pass is nonblocking. It will not * block on page locks and it will not block on writeback. The second pass * will wait. This is to prevent as much IO as possible in the affected region. * The first pass will remove most pages, so the search cost of the second pass * is low. * * When looking at page->index outside the page lock we need to be careful to * copy it into a local to avoid races (it could change at any time). * * We pass down the cache-hot hint to the page freeing code. Even if the * mapping is large, it is probably the case that the final pages are the most * recently touched, and freeing happens in ascending file offset order. */ void truncate_inode_pages_range(struct address_space *mapping, loff_t lstart, loff_t lend) { const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; pgoff_t end; const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); struct pagevec pvec; pgoff_t next; int i; if (mapping->nrpages == 0) return; BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); end = (lend >> PAGE_CACHE_SHIFT); pagevec_init(&pvec, 0); next = start; while (next <= end && pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; pgoff_t page_index = page->index; if (page_index > end) { next = page_index; break; } if (page_index > next) next = page_index; next++; if (TestSetPageLocked(page)) continue; if (PageWriteback(page)) { unlock_page(page); continue; } truncate_complete_page(mapping, page); unlock_page(page); } pagevec_release(&pvec); cond_resched(); } if (partial) { struct page *page = find_lock_page(mapping, start - 1); if (page) { wait_on_page_writeback(page); truncate_partial_page(page, partial); unlock_page(page); page_cache_release(page); } } next = start; for ( ; ; ) { cond_resched(); if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { if (next == start) break; next = start; continue; } if (pvec.pages[0]->index > end) { pagevec_release(&pvec); break; } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; if (page->index > end) break; lock_page(page); wait_on_page_writeback(page); if (page->index > next) next = page->index; next++; truncate_complete_page(mapping, page); unlock_page(page); } pagevec_release(&pvec); } } EXPORT_SYMBOL(truncate_inode_pages_range); /** * truncate_inode_pages - truncate *all* the pages from an offset * @mapping: mapping to truncate * @lstart: offset from which to truncate * * Called under (and serialised by) inode->i_mutex. */ void truncate_inode_pages(struct address_space *mapping, loff_t lstart) { truncate_inode_pages_range(mapping, lstart, (loff_t)-1); } EXPORT_SYMBOL(truncate_inode_pages); /** * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode * @mapping: the address_space which holds the pages to invalidate * @start: the offset 'from' which to invalidate * @end: the offset 'to' which to invalidate (inclusive) * * This function only removes the unlocked pages, if you want to * remove all the pages of one inode, you must call truncate_inode_pages. * * invalidate_mapping_pages() will not block on IO activity. It will not * invalidate pages which are dirty, locked, under writeback or mapped into * pagetables. */ unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end) { struct pagevec pvec; pgoff_t next = start; unsigned long ret = 0; int i; pagevec_init(&pvec, 0); while (next <= end && pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; pgoff_t index; int lock_failed; lock_failed = TestSetPageLocked(page); /* * We really shouldn't be looking at the ->index of an * unlocked page. But we're not allowed to lock these * pages. So we rely upon nobody altering the ->index * of this (pinned-by-us) page. */ index = page->index; if (index > next) next = index; next++; if (lock_failed) continue; if (PageDirty(page) || PageWriteback(page)) goto unlock; if (page_mapped(page)) goto unlock; ret += invalidate_complete_page(mapping, page); unlock: unlock_page(page); if (next > end) break; } pagevec_release(&pvec); } return ret; } unsigned long invalidate_inode_pages(struct address_space *mapping) { return invalidate_mapping_pages(mapping, 0, ~0UL); } EXPORT_SYMBOL(invalidate_inode_pages); /** * invalidate_inode_pages2_range - remove range of pages from an address_space * @mapping: the address_space * @start: the page offset 'from' which to invalidate * @end: the page offset 'to' which to invalidate (inclusive) * * Any pages which are found to be mapped into pagetables are unmapped prior to * invalidation. * * Returns -EIO if any pages could not be invalidated. */ int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end) { struct pagevec pvec; pgoff_t next; int i; int ret = 0; int did_range_unmap = 0; int wrapped = 0; pagevec_init(&pvec, 0); next = start; while (next <= end && !ret && !wrapped && pagevec_lookup(&pvec, mapping, next, min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { for (i = 0; !ret && i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; pgoff_t page_index; int was_dirty; lock_page(page); if (page->mapping != mapping) { unlock_page(page); continue; } page_index = page->index; next = page_index + 1; if (next == 0) wrapped = 1; if (page_index > end) { unlock_page(page); break; } wait_on_page_writeback(page); while (page_mapped(page)) { if (!did_range_unmap) { /* * Zap the rest of the file in one hit. */ unmap_mapping_range(mapping, (loff_t)page_index<<PAGE_CACHE_SHIFT, (loff_t)(end - page_index + 1) << PAGE_CACHE_SHIFT, 0); did_range_unmap = 1; } else { /* * Just zap this page */ unmap_mapping_range(mapping, (loff_t)page_index<<PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE, 0); } } was_dirty = test_clear_page_dirty(page); if (!invalidate_complete_page(mapping, page)) { if (was_dirty) set_page_dirty(page); ret = -EIO; } unlock_page(page); } pagevec_release(&pvec); cond_resched(); } return ret; } EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); /** * invalidate_inode_pages2 - remove all pages from an address_space * @mapping: the address_space * * Any pages which are found to be mapped into pagetables are unmapped prior to * invalidation. * * Returns -EIO if any pages could not be invalidated. */ int invalidate_inode_pages2(struct address_space *mapping) { return invalidate_inode_pages2_range(mapping, 0, -1); } EXPORT_SYMBOL_GPL(invalidate_inode_pages2);