tmp_suning_uos_patched/fs/ntfs3/attrib.c
huangbibo 40ef4e27ac uos overall kernel patch
Signed-off-by: huangbibo <huangbibo@uniontech.com>
2022-09-21 08:52:36 +08:00

2084 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
* TODO: Merge attr_set_size/attr_data_get_block/attr_allocate_frame?
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include "debug.h"
#include "ntfs.h"
#include "ntfs_fs.h"
/*
* You can set external NTFS_MIN_LOG2_OF_CLUMP/NTFS_MAX_LOG2_OF_CLUMP to manage
* preallocate algorithm.
*/
#ifndef NTFS_MIN_LOG2_OF_CLUMP
#define NTFS_MIN_LOG2_OF_CLUMP 16
#endif
#ifndef NTFS_MAX_LOG2_OF_CLUMP
#define NTFS_MAX_LOG2_OF_CLUMP 26
#endif
// 16M
#define NTFS_CLUMP_MIN (1 << (NTFS_MIN_LOG2_OF_CLUMP + 8))
// 16G
#define NTFS_CLUMP_MAX (1ull << (NTFS_MAX_LOG2_OF_CLUMP + 8))
static inline u64 get_pre_allocated(u64 size)
{
u32 clump;
u8 align_shift;
u64 ret;
if (size <= NTFS_CLUMP_MIN) {
clump = 1 << NTFS_MIN_LOG2_OF_CLUMP;
align_shift = NTFS_MIN_LOG2_OF_CLUMP;
} else if (size >= NTFS_CLUMP_MAX) {
clump = 1 << NTFS_MAX_LOG2_OF_CLUMP;
align_shift = NTFS_MAX_LOG2_OF_CLUMP;
} else {
align_shift = NTFS_MIN_LOG2_OF_CLUMP - 1 +
__ffs(size >> (8 + NTFS_MIN_LOG2_OF_CLUMP));
clump = 1u << align_shift;
}
ret = (((size + clump - 1) >> align_shift)) << align_shift;
return ret;
}
/*
* attr_must_be_resident
*
* Return: True if attribute must be resident.
*/
static inline bool attr_must_be_resident(struct ntfs_sb_info *sbi,
enum ATTR_TYPE type)
{
const struct ATTR_DEF_ENTRY *de;
switch (type) {
case ATTR_STD:
case ATTR_NAME:
case ATTR_ID:
case ATTR_LABEL:
case ATTR_VOL_INFO:
case ATTR_ROOT:
case ATTR_EA_INFO:
return true;
default:
de = ntfs_query_def(sbi, type);
if (de && (de->flags & NTFS_ATTR_MUST_BE_RESIDENT))
return true;
return false;
}
}
/*
* attr_load_runs - Load all runs stored in @attr.
*/
int attr_load_runs(struct ATTRIB *attr, struct ntfs_inode *ni,
struct runs_tree *run, const CLST *vcn)
{
int err;
CLST svcn = le64_to_cpu(attr->nres.svcn);
CLST evcn = le64_to_cpu(attr->nres.evcn);
u32 asize;
u16 run_off;
if (svcn >= evcn + 1 || run_is_mapped_full(run, svcn, evcn))
return 0;
if (vcn && (evcn < *vcn || *vcn < svcn))
return -EINVAL;
asize = le32_to_cpu(attr->size);
run_off = le16_to_cpu(attr->nres.run_off);
err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn,
vcn ? *vcn : svcn, Add2Ptr(attr, run_off),
asize - run_off);
if (err < 0)
return err;
return 0;
}
/*
* run_deallocate_ex - Deallocate clusters.
*/
static int run_deallocate_ex(struct ntfs_sb_info *sbi, struct runs_tree *run,
CLST vcn, CLST len, CLST *done, bool trim)
{
int err = 0;
CLST vcn_next, vcn0 = vcn, lcn, clen, dn = 0;
size_t idx;
if (!len)
goto out;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
failed:
run_truncate(run, vcn0);
err = -EINVAL;
goto out;
}
for (;;) {
if (clen > len)
clen = len;
if (!clen) {
err = -EINVAL;
goto out;
}
if (lcn != SPARSE_LCN) {
mark_as_free_ex(sbi, lcn, clen, trim);
dn += clen;
}
len -= clen;
if (!len)
break;
vcn_next = vcn + clen;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn != vcn_next) {
/* Save memory - don't load entire run. */
goto failed;
}
}
out:
if (done)
*done += dn;
return err;
}
/*
* attr_allocate_clusters - Find free space, mark it as used and store in @run.
*/
int attr_allocate_clusters(struct ntfs_sb_info *sbi, struct runs_tree *run,
CLST vcn, CLST lcn, CLST len, CLST *pre_alloc,
enum ALLOCATE_OPT opt, CLST *alen, const size_t fr,
CLST *new_lcn)
{
int err;
CLST flen, vcn0 = vcn, pre = pre_alloc ? *pre_alloc : 0;
struct wnd_bitmap *wnd = &sbi->used.bitmap;
size_t cnt = run->count;
for (;;) {
err = ntfs_look_for_free_space(sbi, lcn, len + pre, &lcn, &flen,
opt);
if (err == -ENOSPC && pre) {
pre = 0;
if (*pre_alloc)
*pre_alloc = 0;
continue;
}
if (err)
goto out;
if (new_lcn && vcn == vcn0)
*new_lcn = lcn;
/* Add new fragment into run storage. */
if (!run_add_entry(run, vcn, lcn, flen, opt == ALLOCATE_MFT)) {
/* Undo last 'ntfs_look_for_free_space' */
down_write_nested(&wnd->rw_lock, BITMAP_MUTEX_CLUSTERS);
wnd_set_free(wnd, lcn, flen);
up_write(&wnd->rw_lock);
err = -ENOMEM;
goto out;
}
vcn += flen;
if (flen >= len || opt == ALLOCATE_MFT ||
(fr && run->count - cnt >= fr)) {
*alen = vcn - vcn0;
return 0;
}
len -= flen;
}
out:
/* Undo 'ntfs_look_for_free_space' */
if (vcn - vcn0) {
run_deallocate_ex(sbi, run, vcn0, vcn - vcn0, NULL, false);
run_truncate(run, vcn0);
}
return err;
}
/*
* attr_make_nonresident
*
* If page is not NULL - it is already contains resident data
* and locked (called from ni_write_frame()).
*/
int attr_make_nonresident(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY *le, struct mft_inode *mi,
u64 new_size, struct runs_tree *run,
struct ATTRIB **ins_attr, struct page *page)
{
struct ntfs_sb_info *sbi;
struct ATTRIB *attr_s;
struct MFT_REC *rec;
u32 used, asize, rsize, aoff, align;
bool is_data;
CLST len, alen;
char *next;
int err;
if (attr->non_res) {
*ins_attr = attr;
return 0;
}
sbi = mi->sbi;
rec = mi->mrec;
attr_s = NULL;
used = le32_to_cpu(rec->used);
asize = le32_to_cpu(attr->size);
next = Add2Ptr(attr, asize);
aoff = PtrOffset(rec, attr);
rsize = le32_to_cpu(attr->res.data_size);
is_data = attr->type == ATTR_DATA && !attr->name_len;
align = sbi->cluster_size;
if (is_attr_compressed(attr))
align <<= COMPRESSION_UNIT;
len = (rsize + align - 1) >> sbi->cluster_bits;
run_init(run);
/* Make a copy of original attribute. */
attr_s = kmemdup(attr, asize, GFP_NOFS);
if (!attr_s) {
err = -ENOMEM;
goto out;
}
if (!len) {
/* Empty resident -> Empty nonresident. */
alen = 0;
} else {
const char *data = resident_data(attr);
err = attr_allocate_clusters(sbi, run, 0, 0, len, NULL,
ALLOCATE_DEF, &alen, 0, NULL);
if (err)
goto out1;
if (!rsize) {
/* Empty resident -> Non empty nonresident. */
} else if (!is_data) {
err = ntfs_sb_write_run(sbi, run, 0, data, rsize, 0);
if (err)
goto out2;
} else if (!page) {
char *kaddr;
page = grab_cache_page(ni->vfs_inode.i_mapping, 0);
if (!page) {
err = -ENOMEM;
goto out2;
}
kaddr = kmap_atomic(page);
memcpy(kaddr, data, rsize);
memset(kaddr + rsize, 0, PAGE_SIZE - rsize);
kunmap_atomic(kaddr);
flush_dcache_page(page);
SetPageUptodate(page);
set_page_dirty(page);
unlock_page(page);
put_page(page);
}
}
/* Remove original attribute. */
used -= asize;
memmove(attr, Add2Ptr(attr, asize), used - aoff);
rec->used = cpu_to_le32(used);
mi->dirty = true;
if (le)
al_remove_le(ni, le);
err = ni_insert_nonresident(ni, attr_s->type, attr_name(attr_s),
attr_s->name_len, run, 0, alen,
attr_s->flags, &attr, NULL);
if (err)
goto out3;
kfree(attr_s);
attr->nres.data_size = cpu_to_le64(rsize);
attr->nres.valid_size = attr->nres.data_size;
*ins_attr = attr;
if (is_data)
ni->ni_flags &= ~NI_FLAG_RESIDENT;
/* Resident attribute becomes non resident. */
return 0;
out3:
attr = Add2Ptr(rec, aoff);
memmove(next, attr, used - aoff);
memcpy(attr, attr_s, asize);
rec->used = cpu_to_le32(used + asize);
mi->dirty = true;
out2:
/* Undo: do not trim new allocated clusters. */
run_deallocate(sbi, run, false);
run_close(run);
out1:
kfree(attr_s);
out:
return err;
}
/*
* attr_set_size_res - Helper for attr_set_size().
*/
static int attr_set_size_res(struct ntfs_inode *ni, struct ATTRIB *attr,
struct ATTR_LIST_ENTRY *le, struct mft_inode *mi,
u64 new_size, struct runs_tree *run,
struct ATTRIB **ins_attr)
{
struct ntfs_sb_info *sbi = mi->sbi;
struct MFT_REC *rec = mi->mrec;
u32 used = le32_to_cpu(rec->used);
u32 asize = le32_to_cpu(attr->size);
u32 aoff = PtrOffset(rec, attr);
u32 rsize = le32_to_cpu(attr->res.data_size);
u32 tail = used - aoff - asize;
char *next = Add2Ptr(attr, asize);
s64 dsize = ALIGN(new_size, 8) - ALIGN(rsize, 8);
if (dsize < 0) {
memmove(next + dsize, next, tail);
} else if (dsize > 0) {
if (used + dsize > sbi->max_bytes_per_attr)
return attr_make_nonresident(ni, attr, le, mi, new_size,
run, ins_attr, NULL);
memmove(next + dsize, next, tail);
memset(next, 0, dsize);
}
if (new_size > rsize)
memset(Add2Ptr(resident_data(attr), rsize), 0,
new_size - rsize);
rec->used = cpu_to_le32(used + dsize);
attr->size = cpu_to_le32(asize + dsize);
attr->res.data_size = cpu_to_le32(new_size);
mi->dirty = true;
*ins_attr = attr;
return 0;
}
/*
* attr_set_size - Change the size of attribute.
*
* Extend:
* - Sparse/compressed: No allocated clusters.
* - Normal: Append allocated and preallocated new clusters.
* Shrink:
* - No deallocate if @keep_prealloc is set.
*/
int attr_set_size(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
u64 new_size, const u64 *new_valid, bool keep_prealloc,
struct ATTRIB **ret)
{
int err = 0;
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
bool is_mft =
ni->mi.rno == MFT_REC_MFT && type == ATTR_DATA && !name_len;
u64 old_valid, old_size, old_alloc, new_alloc, new_alloc_tmp;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST alen, vcn, lcn, new_alen, old_alen, svcn, evcn;
CLST next_svcn, pre_alloc = -1, done = 0;
bool is_ext;
u32 align;
struct MFT_REC *rec;
again:
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len, NULL,
&mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
if (!attr_b->non_res) {
err = attr_set_size_res(ni, attr_b, le_b, mi_b, new_size, run,
&attr_b);
if (err || !attr_b->non_res)
goto out;
/* Layout of records may be changed, so do a full search. */
goto again;
}
is_ext = is_attr_ext(attr_b);
again_1:
align = sbi->cluster_size;
if (is_ext)
align <<= attr_b->nres.c_unit;
old_valid = le64_to_cpu(attr_b->nres.valid_size);
old_size = le64_to_cpu(attr_b->nres.data_size);
old_alloc = le64_to_cpu(attr_b->nres.alloc_size);
old_alen = old_alloc >> cluster_bits;
new_alloc = (new_size + align - 1) & ~(u64)(align - 1);
new_alen = new_alloc >> cluster_bits;
if (keep_prealloc && new_size < old_size) {
attr_b->nres.data_size = cpu_to_le64(new_size);
mi_b->dirty = true;
goto ok;
}
vcn = old_alen - 1;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn = le64_to_cpu(attr_b->nres.evcn);
if (svcn <= vcn && vcn <= evcn) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, type, name, name_len, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
next_le_1:
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
next_le:
rec = mi->mrec;
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
if (new_size > old_size) {
CLST to_allocate;
size_t free;
if (new_alloc <= old_alloc) {
attr_b->nres.data_size = cpu_to_le64(new_size);
mi_b->dirty = true;
goto ok;
}
to_allocate = new_alen - old_alen;
add_alloc_in_same_attr_seg:
lcn = 0;
if (is_mft) {
/* MFT allocates clusters from MFT zone. */
pre_alloc = 0;
} else if (is_ext) {
/* No preallocate for sparse/compress. */
pre_alloc = 0;
} else if (pre_alloc == -1) {
pre_alloc = 0;
if (type == ATTR_DATA && !name_len &&
sbi->options->prealloc) {
CLST new_alen2 = bytes_to_cluster(
sbi, get_pre_allocated(new_size));
pre_alloc = new_alen2 - new_alen;
}
/* Get the last LCN to allocate from. */
if (old_alen &&
!run_lookup_entry(run, vcn, &lcn, NULL, NULL)) {
lcn = SPARSE_LCN;
}
if (lcn == SPARSE_LCN)
lcn = 0;
else if (lcn)
lcn += 1;
free = wnd_zeroes(&sbi->used.bitmap);
if (to_allocate > free) {
err = -ENOSPC;
goto out;
}
if (pre_alloc && to_allocate + pre_alloc > free)
pre_alloc = 0;
}
vcn = old_alen;
if (is_ext) {
if (!run_add_entry(run, vcn, SPARSE_LCN, to_allocate,
false)) {
err = -ENOMEM;
goto out;
}
alen = to_allocate;
} else {
/* ~3 bytes per fragment. */
err = attr_allocate_clusters(
sbi, run, vcn, lcn, to_allocate, &pre_alloc,
is_mft ? ALLOCATE_MFT : 0, &alen,
is_mft ? 0
: (sbi->record_size -
le32_to_cpu(rec->used) + 8) /
3 +
1,
NULL);
if (err)
goto out;
}
done += alen;
vcn += alen;
if (to_allocate > alen)
to_allocate -= alen;
else
to_allocate = 0;
pack_runs:
err = mi_pack_runs(mi, attr, run, vcn - svcn);
if (err)
goto out;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
new_alloc_tmp = (u64)next_svcn << cluster_bits;
attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp);
mi_b->dirty = true;
if (next_svcn >= vcn && !to_allocate) {
/* Normal way. Update attribute and exit. */
attr_b->nres.data_size = cpu_to_le64(new_size);
goto ok;
}
/* At least two MFT to avoid recursive loop. */
if (is_mft && next_svcn == vcn &&
((u64)done << sbi->cluster_bits) >= 2 * sbi->record_size) {
new_size = new_alloc_tmp;
attr_b->nres.data_size = attr_b->nres.alloc_size;
goto ok;
}
if (le32_to_cpu(rec->used) < sbi->record_size) {
old_alen = next_svcn;
evcn = old_alen - 1;
goto add_alloc_in_same_attr_seg;
}
attr_b->nres.data_size = attr_b->nres.alloc_size;
if (new_alloc_tmp < old_valid)
attr_b->nres.valid_size = attr_b->nres.data_size;
if (type == ATTR_LIST) {
err = ni_expand_list(ni);
if (err)
goto out;
if (next_svcn < vcn)
goto pack_runs;
/* Layout of records is changed. */
goto again;
}
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
}
if (next_svcn >= vcn) {
/* This is MFT data, repeat. */
goto again;
}
/* Insert new attribute segment. */
err = ni_insert_nonresident(ni, type, name, name_len, run,
next_svcn, vcn - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
if (!is_mft)
run_truncate_head(run, evcn + 1);
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
le_b = NULL;
/*
* Layout of records maybe changed.
* Find base attribute to update.
*/
attr_b = ni_find_attr(ni, NULL, &le_b, type, name, name_len,
NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr_b->nres.alloc_size = cpu_to_le64((u64)vcn << cluster_bits);
attr_b->nres.data_size = attr_b->nres.alloc_size;
attr_b->nres.valid_size = attr_b->nres.alloc_size;
mi_b->dirty = true;
goto again_1;
}
if (new_size != old_size ||
(new_alloc != old_alloc && !keep_prealloc)) {
vcn = max(svcn, new_alen);
new_alloc_tmp = (u64)vcn << cluster_bits;
alen = 0;
err = run_deallocate_ex(sbi, run, vcn, evcn - vcn + 1, &alen,
true);
if (err)
goto out;
run_truncate(run, vcn);
if (vcn > svcn) {
err = mi_pack_runs(mi, attr, run, vcn - svcn);
if (err)
goto out;
} else if (le && le->vcn) {
u16 le_sz = le16_to_cpu(le->size);
/*
* NOTE: List entries for one attribute are always
* the same size. We deal with last entry (vcn==0)
* and it is not first in entries array
* (list entry for std attribute always first).
* So it is safe to step back.
*/
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz);
} else {
attr->nres.evcn = cpu_to_le64((u64)vcn - 1);
mi->dirty = true;
}
attr_b->nres.alloc_size = cpu_to_le64(new_alloc_tmp);
if (vcn == new_alen) {
attr_b->nres.data_size = cpu_to_le64(new_size);
if (new_size < old_valid)
attr_b->nres.valid_size =
attr_b->nres.data_size;
} else {
if (new_alloc_tmp <=
le64_to_cpu(attr_b->nres.data_size))
attr_b->nres.data_size =
attr_b->nres.alloc_size;
if (new_alloc_tmp <
le64_to_cpu(attr_b->nres.valid_size))
attr_b->nres.valid_size =
attr_b->nres.alloc_size;
}
if (is_ext)
le64_sub_cpu(&attr_b->nres.total_size,
((u64)alen << cluster_bits));
mi_b->dirty = true;
if (new_alloc_tmp <= new_alloc)
goto ok;
old_size = new_alloc_tmp;
vcn = svcn - 1;
if (le == le_b) {
attr = attr_b;
mi = mi_b;
evcn = svcn - 1;
svcn = 0;
goto next_le;
}
if (le->type != type || le->name_len != name_len ||
memcmp(le_name(le), name, name_len * sizeof(short))) {
err = -EINVAL;
goto out;
}
err = ni_load_mi(ni, le, &mi);
if (err)
goto out;
attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
goto next_le_1;
}
ok:
if (new_valid) {
__le64 valid = cpu_to_le64(min(*new_valid, new_size));
if (attr_b->nres.valid_size != valid) {
attr_b->nres.valid_size = valid;
mi_b->dirty = true;
}
}
out:
if (!err && attr_b && ret)
*ret = attr_b;
/* Update inode_set_bytes. */
if (!err && ((type == ATTR_DATA && !name_len) ||
(type == ATTR_ALLOC && name == I30_NAME))) {
bool dirty = false;
if (ni->vfs_inode.i_size != new_size) {
ni->vfs_inode.i_size = new_size;
dirty = true;
}
if (attr_b && attr_b->non_res) {
new_alloc = le64_to_cpu(attr_b->nres.alloc_size);
if (inode_get_bytes(&ni->vfs_inode) != new_alloc) {
inode_set_bytes(&ni->vfs_inode, new_alloc);
dirty = true;
}
}
if (dirty) {
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
}
}
return err;
}
int attr_data_get_block(struct ntfs_inode *ni, CLST vcn, CLST clen, CLST *lcn,
CLST *len, bool *new)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi;
u8 cluster_bits;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST hint, svcn, to_alloc, evcn1, next_svcn, asize, end;
u64 total_size;
u32 clst_per_frame;
bool ok;
if (new)
*new = false;
down_read(&ni->file.run_lock);
ok = run_lookup_entry(run, vcn, lcn, len, NULL);
up_read(&ni->file.run_lock);
if (ok && (*lcn != SPARSE_LCN || !new)) {
/* Normal way. */
return 0;
}
if (!clen)
clen = 1;
if (ok && clen > *len)
clen = *len;
sbi = ni->mi.sbi;
cluster_bits = sbi->cluster_bits;
ni_lock(ni);
down_write(&ni->file.run_lock);
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
if (!attr_b->non_res) {
*lcn = RESIDENT_LCN;
*len = 1;
goto out;
}
asize = le64_to_cpu(attr_b->nres.alloc_size) >> sbi->cluster_bits;
if (vcn >= asize) {
err = -EINVAL;
goto out;
}
clst_per_frame = 1u << attr_b->nres.c_unit;
to_alloc = (clen + clst_per_frame - 1) & ~(clst_per_frame - 1);
if (vcn + to_alloc > asize)
to_alloc = asize - vcn;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
attr = attr_b;
le = le_b;
mi = mi_b;
if (le_b && (vcn < svcn || evcn1 <= vcn)) {
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
if (!ok) {
ok = run_lookup_entry(run, vcn, lcn, len, NULL);
if (ok && (*lcn != SPARSE_LCN || !new)) {
/* Normal way. */
err = 0;
goto ok;
}
if (!ok && !new) {
*len = 0;
err = 0;
goto ok;
}
if (ok && clen > *len) {
clen = *len;
to_alloc = (clen + clst_per_frame - 1) &
~(clst_per_frame - 1);
}
}
if (!is_attr_ext(attr_b)) {
err = -EINVAL;
goto out;
}
/* Get the last LCN to allocate from. */
hint = 0;
if (vcn > evcn1) {
if (!run_add_entry(run, evcn1, SPARSE_LCN, vcn - evcn1,
false)) {
err = -ENOMEM;
goto out;
}
} else if (vcn && !run_lookup_entry(run, vcn - 1, &hint, NULL, NULL)) {
hint = -1;
}
err = attr_allocate_clusters(
sbi, run, vcn, hint + 1, to_alloc, NULL, 0, len,
(sbi->record_size - le32_to_cpu(mi->mrec->used) + 8) / 3 + 1,
lcn);
if (err)
goto out;
*new = true;
end = vcn + *len;
total_size = le64_to_cpu(attr_b->nres.total_size) +
((u64)*len << cluster_bits);
repack:
err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn);
if (err)
goto out;
attr_b->nres.total_size = cpu_to_le64(total_size);
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mi_b->dirty = true;
mark_inode_dirty(&ni->vfs_inode);
/* Stored [vcn : next_svcn) from [vcn : end). */
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (end <= evcn1) {
if (next_svcn == evcn1) {
/* Normal way. Update attribute and exit. */
goto ok;
}
/* Add new segment [next_svcn : evcn1 - next_svcn). */
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL,
0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr = attr_b;
le = le_b;
mi = mi_b;
goto repack;
}
}
svcn = evcn1;
/* Estimate next attribute. */
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi);
if (attr) {
CLST alloc = bytes_to_cluster(
sbi, le64_to_cpu(attr_b->nres.alloc_size));
CLST evcn = le64_to_cpu(attr->nres.evcn);
if (end < next_svcn)
end = next_svcn;
while (end > evcn) {
/* Remove segment [svcn : evcn). */
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn + 1 >= alloc) {
/* Last attribute segment. */
evcn1 = evcn + 1;
goto ins_ext;
}
if (ni_load_mi(ni, le, &mi)) {
attr = NULL;
goto out;
}
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0,
&le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
if (end < svcn)
end = svcn;
err = attr_load_runs(attr, ni, run, &end);
if (err)
goto out;
evcn1 = evcn + 1;
attr->nres.svcn = cpu_to_le64(next_svcn);
err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn);
if (err)
goto out;
le->vcn = cpu_to_le64(next_svcn);
ni->attr_list.dirty = true;
mi->dirty = true;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
}
ins_ext:
if (evcn1 > next_svcn) {
err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run,
next_svcn, evcn1 - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
}
ok:
run_truncate_around(run, vcn);
out:
up_write(&ni->file.run_lock);
ni_unlock(ni);
return err;
}
int attr_data_read_resident(struct ntfs_inode *ni, struct page *page)
{
u64 vbo;
struct ATTRIB *attr;
u32 data_size;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, NULL);
if (!attr)
return -EINVAL;
if (attr->non_res)
return E_NTFS_NONRESIDENT;
vbo = page->index << PAGE_SHIFT;
data_size = le32_to_cpu(attr->res.data_size);
if (vbo < data_size) {
const char *data = resident_data(attr);
char *kaddr = kmap_atomic(page);
u32 use = data_size - vbo;
if (use > PAGE_SIZE)
use = PAGE_SIZE;
memcpy(kaddr, data + vbo, use);
memset(kaddr + use, 0, PAGE_SIZE - use);
kunmap_atomic(kaddr);
flush_dcache_page(page);
SetPageUptodate(page);
} else if (!PageUptodate(page)) {
zero_user_segment(page, 0, PAGE_SIZE);
SetPageUptodate(page);
}
return 0;
}
int attr_data_write_resident(struct ntfs_inode *ni, struct page *page)
{
u64 vbo;
struct mft_inode *mi;
struct ATTRIB *attr;
u32 data_size;
attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
if (!attr)
return -EINVAL;
if (attr->non_res) {
/* Return special error code to check this case. */
return E_NTFS_NONRESIDENT;
}
vbo = page->index << PAGE_SHIFT;
data_size = le32_to_cpu(attr->res.data_size);
if (vbo < data_size) {
char *data = resident_data(attr);
char *kaddr = kmap_atomic(page);
u32 use = data_size - vbo;
if (use > PAGE_SIZE)
use = PAGE_SIZE;
memcpy(data + vbo, kaddr, use);
kunmap_atomic(kaddr);
mi->dirty = true;
}
ni->i_valid = data_size;
return 0;
}
/*
* attr_load_runs_vcn - Load runs with VCN.
*/
int attr_load_runs_vcn(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
CLST vcn)
{
struct ATTRIB *attr;
int err;
CLST svcn, evcn;
u16 ro;
attr = ni_find_attr(ni, NULL, NULL, type, name, name_len, &vcn, NULL);
if (!attr) {
/* Is record corrupted? */
return -ENOENT;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
if (evcn < vcn || vcn < svcn) {
/* Is record corrupted? */
return -EINVAL;
}
ro = le16_to_cpu(attr->nres.run_off);
err = run_unpack_ex(run, ni->mi.sbi, ni->mi.rno, svcn, evcn, svcn,
Add2Ptr(attr, ro), le32_to_cpu(attr->size) - ro);
if (err < 0)
return err;
return 0;
}
/*
* attr_load_runs_range - Load runs for given range [from to).
*/
int attr_load_runs_range(struct ntfs_inode *ni, enum ATTR_TYPE type,
const __le16 *name, u8 name_len, struct runs_tree *run,
u64 from, u64 to)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
u8 cluster_bits = sbi->cluster_bits;
CLST vcn = from >> cluster_bits;
CLST vcn_last = (to - 1) >> cluster_bits;
CLST lcn, clen;
int err;
for (vcn = from >> cluster_bits; vcn <= vcn_last; vcn += clen) {
if (!run_lookup_entry(run, vcn, &lcn, &clen, NULL)) {
err = attr_load_runs_vcn(ni, type, name, name_len, run,
vcn);
if (err)
return err;
clen = 0; /* Next run_lookup_entry(vcn) must be success. */
}
}
return 0;
}
#ifdef CONFIG_NTFS3_LZX_XPRESS
/*
* attr_wof_frame_info
*
* Read header of Xpress/LZX file to get info about frame.
*/
int attr_wof_frame_info(struct ntfs_inode *ni, struct ATTRIB *attr,
struct runs_tree *run, u64 frame, u64 frames,
u8 frame_bits, u32 *ondisk_size, u64 *vbo_data)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
u64 vbo[2], off[2], wof_size;
u32 voff;
u8 bytes_per_off;
char *addr;
struct page *page;
int i, err;
__le32 *off32;
__le64 *off64;
if (ni->vfs_inode.i_size < 0x100000000ull) {
/* File starts with array of 32 bit offsets. */
bytes_per_off = sizeof(__le32);
vbo[1] = frame << 2;
*vbo_data = frames << 2;
} else {
/* File starts with array of 64 bit offsets. */
bytes_per_off = sizeof(__le64);
vbo[1] = frame << 3;
*vbo_data = frames << 3;
}
/*
* Read 4/8 bytes at [vbo - 4(8)] == offset where compressed frame starts.
* Read 4/8 bytes at [vbo] == offset where compressed frame ends.
*/
if (!attr->non_res) {
if (vbo[1] + bytes_per_off > le32_to_cpu(attr->res.data_size)) {
ntfs_inode_err(&ni->vfs_inode, "is corrupted");
return -EINVAL;
}
addr = resident_data(attr);
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, vbo[1]);
off[0] = vbo[1] ? le32_to_cpu(off32[-1]) : 0;
off[1] = le32_to_cpu(off32[0]);
} else {
off64 = Add2Ptr(addr, vbo[1]);
off[0] = vbo[1] ? le64_to_cpu(off64[-1]) : 0;
off[1] = le64_to_cpu(off64[0]);
}
*vbo_data += off[0];
*ondisk_size = off[1] - off[0];
return 0;
}
wof_size = le64_to_cpu(attr->nres.data_size);
down_write(&ni->file.run_lock);
page = ni->file.offs_page;
if (!page) {
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out;
}
page->index = -1;
ni->file.offs_page = page;
}
lock_page(page);
addr = page_address(page);
if (vbo[1]) {
voff = vbo[1] & (PAGE_SIZE - 1);
vbo[0] = vbo[1] - bytes_per_off;
i = 0;
} else {
voff = 0;
vbo[0] = 0;
off[0] = 0;
i = 1;
}
do {
pgoff_t index = vbo[i] >> PAGE_SHIFT;
if (index != page->index) {
u64 from = vbo[i] & ~(u64)(PAGE_SIZE - 1);
u64 to = min(from + PAGE_SIZE, wof_size);
err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
ARRAY_SIZE(WOF_NAME), run,
from, to);
if (err)
goto out1;
err = ntfs_bio_pages(sbi, run, &page, 1, from,
to - from, REQ_OP_READ);
if (err) {
page->index = -1;
goto out1;
}
page->index = index;
}
if (i) {
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, voff);
off[1] = le32_to_cpu(*off32);
} else {
off64 = Add2Ptr(addr, voff);
off[1] = le64_to_cpu(*off64);
}
} else if (!voff) {
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, PAGE_SIZE - sizeof(u32));
off[0] = le32_to_cpu(*off32);
} else {
off64 = Add2Ptr(addr, PAGE_SIZE - sizeof(u64));
off[0] = le64_to_cpu(*off64);
}
} else {
/* Two values in one page. */
if (bytes_per_off == sizeof(__le32)) {
off32 = Add2Ptr(addr, voff);
off[0] = le32_to_cpu(off32[-1]);
off[1] = le32_to_cpu(off32[0]);
} else {
off64 = Add2Ptr(addr, voff);
off[0] = le64_to_cpu(off64[-1]);
off[1] = le64_to_cpu(off64[0]);
}
break;
}
} while (++i < 2);
*vbo_data += off[0];
*ondisk_size = off[1] - off[0];
out1:
unlock_page(page);
out:
up_write(&ni->file.run_lock);
return err;
}
#endif
/*
* attr_is_frame_compressed - Used to detect compressed frame.
*/
int attr_is_frame_compressed(struct ntfs_inode *ni, struct ATTRIB *attr,
CLST frame, CLST *clst_data)
{
int err;
u32 clst_frame;
CLST clen, lcn, vcn, alen, slen, vcn_next;
size_t idx;
struct runs_tree *run;
*clst_data = 0;
if (!is_attr_compressed(attr))
return 0;
if (!attr->non_res)
return 0;
clst_frame = 1u << attr->nres.c_unit;
vcn = frame * clst_frame;
run = &ni->file.run;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx)) {
err = attr_load_runs_vcn(ni, attr->type, attr_name(attr),
attr->name_len, run, vcn);
if (err)
return err;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx))
return -EINVAL;
}
if (lcn == SPARSE_LCN) {
/* Sparsed frame. */
return 0;
}
if (clen >= clst_frame) {
/*
* The frame is not compressed 'cause
* it does not contain any sparse clusters.
*/
*clst_data = clst_frame;
return 0;
}
alen = bytes_to_cluster(ni->mi.sbi, le64_to_cpu(attr->nres.alloc_size));
slen = 0;
*clst_data = clen;
/*
* The frame is compressed if *clst_data + slen >= clst_frame.
* Check next fragments.
*/
while ((vcn += clen) < alen) {
vcn_next = vcn;
if (!run_get_entry(run, ++idx, &vcn, &lcn, &clen) ||
vcn_next != vcn) {
err = attr_load_runs_vcn(ni, attr->type,
attr_name(attr),
attr->name_len, run, vcn_next);
if (err)
return err;
vcn = vcn_next;
if (!run_lookup_entry(run, vcn, &lcn, &clen, &idx))
return -EINVAL;
}
if (lcn == SPARSE_LCN) {
slen += clen;
} else {
if (slen) {
/*
* Data_clusters + sparse_clusters =
* not enough for frame.
*/
return -EINVAL;
}
*clst_data += clen;
}
if (*clst_data + slen >= clst_frame) {
if (!slen) {
/*
* There is no sparsed clusters in this frame
* so it is not compressed.
*/
*clst_data = clst_frame;
} else {
/* Frame is compressed. */
}
break;
}
}
return 0;
}
/*
* attr_allocate_frame - Allocate/free clusters for @frame.
*
* Assumed: down_write(&ni->file.run_lock);
*/
int attr_allocate_frame(struct ntfs_inode *ni, CLST frame, size_t compr_size,
u64 new_valid)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, next_svcn, lcn, len;
CLST vcn, end, clst_data;
u64 total_size, valid_size, data_size;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!is_attr_ext(attr_b))
return -EINVAL;
vcn = frame << NTFS_LZNT_CUNIT;
total_size = le64_to_cpu(attr_b->nres.total_size);
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
data_size = le64_to_cpu(attr_b->nres.data_size);
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
err = attr_load_runs(attr, ni, run, NULL);
if (err)
goto out;
err = attr_is_frame_compressed(ni, attr_b, frame, &clst_data);
if (err)
goto out;
total_size -= (u64)clst_data << sbi->cluster_bits;
len = bytes_to_cluster(sbi, compr_size);
if (len == clst_data)
goto out;
if (len < clst_data) {
err = run_deallocate_ex(sbi, run, vcn + len, clst_data - len,
NULL, true);
if (err)
goto out;
if (!run_add_entry(run, vcn + len, SPARSE_LCN, clst_data - len,
false)) {
err = -ENOMEM;
goto out;
}
end = vcn + clst_data;
/* Run contains updated range [vcn + len : end). */
} else {
CLST alen, hint = 0;
/* Get the last LCN to allocate from. */
if (vcn + clst_data &&
!run_lookup_entry(run, vcn + clst_data - 1, &hint, NULL,
NULL)) {
hint = -1;
}
err = attr_allocate_clusters(sbi, run, vcn + clst_data,
hint + 1, len - clst_data, NULL, 0,
&alen, 0, &lcn);
if (err)
goto out;
end = vcn + len;
/* Run contains updated range [vcn + clst_data : end). */
}
total_size += (u64)len << sbi->cluster_bits;
repack:
err = mi_pack_runs(mi, attr, run, max(end, evcn1) - svcn);
if (err)
goto out;
attr_b->nres.total_size = cpu_to_le64(total_size);
inode_set_bytes(&ni->vfs_inode, total_size);
mi_b->dirty = true;
mark_inode_dirty(&ni->vfs_inode);
/* Stored [vcn : next_svcn) from [vcn : end). */
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (end <= evcn1) {
if (next_svcn == evcn1) {
/* Normal way. Update attribute and exit. */
goto ok;
}
/* Add new segment [next_svcn : evcn1 - next_svcn). */
if (!ni->attr_list.size) {
err = ni_create_attr_list(ni);
if (err)
goto out;
/* Layout of records is changed. */
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL,
0, NULL, &mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
attr = attr_b;
le = le_b;
mi = mi_b;
goto repack;
}
}
svcn = evcn1;
/* Estimate next attribute. */
attr = ni_find_attr(ni, attr, &le, ATTR_DATA, NULL, 0, &svcn, &mi);
if (attr) {
CLST alloc = bytes_to_cluster(
sbi, le64_to_cpu(attr_b->nres.alloc_size));
CLST evcn = le64_to_cpu(attr->nres.evcn);
if (end < next_svcn)
end = next_svcn;
while (end > evcn) {
/* Remove segment [svcn : evcn). */
mi_remove_attr(NULL, mi, attr);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn + 1 >= alloc) {
/* Last attribute segment. */
evcn1 = evcn + 1;
goto ins_ext;
}
if (ni_load_mi(ni, le, &mi)) {
attr = NULL;
goto out;
}
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0,
&le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn = le64_to_cpu(attr->nres.evcn);
}
if (end < svcn)
end = svcn;
err = attr_load_runs(attr, ni, run, &end);
if (err)
goto out;
evcn1 = evcn + 1;
attr->nres.svcn = cpu_to_le64(next_svcn);
err = mi_pack_runs(mi, attr, run, evcn1 - next_svcn);
if (err)
goto out;
le->vcn = cpu_to_le64(next_svcn);
ni->attr_list.dirty = true;
mi->dirty = true;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
}
ins_ext:
if (evcn1 > next_svcn) {
err = ni_insert_nonresident(ni, ATTR_DATA, NULL, 0, run,
next_svcn, evcn1 - next_svcn,
attr_b->flags, &attr, &mi);
if (err)
goto out;
}
ok:
run_truncate_around(run, vcn);
out:
if (new_valid > data_size)
new_valid = data_size;
valid_size = le64_to_cpu(attr_b->nres.valid_size);
if (new_valid != valid_size) {
attr_b->nres.valid_size = cpu_to_le64(valid_size);
mi_b->dirty = true;
}
return err;
}
/*
* attr_collapse_range - Collapse range in file.
*/
int attr_collapse_range(struct ntfs_inode *ni, u64 vbo, u64 bytes)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, len, dealloc, alen;
CLST vcn, end;
u64 valid_size, data_size, alloc_size, total_size;
u32 mask;
__le16 a_flags;
if (!bytes)
return 0;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!attr_b->non_res) {
/* Attribute is resident. Nothing to do? */
return 0;
}
data_size = le64_to_cpu(attr_b->nres.data_size);
alloc_size = le64_to_cpu(attr_b->nres.alloc_size);
a_flags = attr_b->flags;
if (is_attr_ext(attr_b)) {
total_size = le64_to_cpu(attr_b->nres.total_size);
mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1;
} else {
total_size = alloc_size;
mask = sbi->cluster_mask;
}
if ((vbo & mask) || (bytes & mask)) {
/* Allow to collapse only cluster aligned ranges. */
return -EINVAL;
}
if (vbo > data_size)
return -EINVAL;
down_write(&ni->file.run_lock);
if (vbo + bytes >= data_size) {
u64 new_valid = min(ni->i_valid, vbo);
/* Simple truncate file at 'vbo'. */
truncate_setsize(&ni->vfs_inode, vbo);
err = attr_set_size(ni, ATTR_DATA, NULL, 0, &ni->file.run, vbo,
&new_valid, true, NULL);
if (!err && new_valid < ni->i_valid)
ni->i_valid = new_valid;
goto out;
}
/*
* Enumerate all attribute segments and collapse.
*/
alen = alloc_size >> sbi->cluster_bits;
vcn = vbo >> sbi->cluster_bits;
len = bytes >> sbi->cluster_bits;
end = vcn + len;
dealloc = 0;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
for (;;) {
if (svcn >= end) {
/* Shift VCN- */
attr->nres.svcn = cpu_to_le64(svcn - len);
attr->nres.evcn = cpu_to_le64(evcn1 - 1 - len);
if (le) {
le->vcn = attr->nres.svcn;
ni->attr_list.dirty = true;
}
mi->dirty = true;
} else if (svcn < vcn || end < evcn1) {
CLST vcn1, eat, next_svcn;
/* Collapse a part of this attribute segment. */
err = attr_load_runs(attr, ni, run, &svcn);
if (err)
goto out;
vcn1 = max(vcn, svcn);
eat = min(end, evcn1) - vcn1;
err = run_deallocate_ex(sbi, run, vcn1, eat, &dealloc,
true);
if (err)
goto out;
if (!run_collapse_range(run, vcn1, eat)) {
err = -ENOMEM;
goto out;
}
if (svcn >= vcn) {
/* Shift VCN */
attr->nres.svcn = cpu_to_le64(vcn);
if (le) {
le->vcn = attr->nres.svcn;
ni->attr_list.dirty = true;
}
}
err = mi_pack_runs(mi, attr, run, evcn1 - svcn - eat);
if (err)
goto out;
next_svcn = le64_to_cpu(attr->nres.evcn) + 1;
if (next_svcn + eat < evcn1) {
err = ni_insert_nonresident(
ni, ATTR_DATA, NULL, 0, run, next_svcn,
evcn1 - eat - next_svcn, a_flags, &attr,
&mi);
if (err)
goto out;
/* Layout of records maybe changed. */
attr_b = NULL;
le = al_find_ex(ni, NULL, ATTR_DATA, NULL, 0,
&next_svcn);
if (!le) {
err = -EINVAL;
goto out;
}
}
/* Free all allocated memory. */
run_truncate(run, 0);
} else {
u16 le_sz;
u16 roff = le16_to_cpu(attr->nres.run_off);
run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn,
evcn1 - 1, svcn, Add2Ptr(attr, roff),
le32_to_cpu(attr->size) - roff);
/* Delete this attribute segment. */
mi_remove_attr(NULL, mi, attr);
if (!le)
break;
le_sz = le16_to_cpu(le->size);
if (!al_remove_le(ni, le)) {
err = -EINVAL;
goto out;
}
if (evcn1 >= alen)
break;
if (!svcn) {
/* Load next record that contains this attribute. */
if (ni_load_mi(ni, le, &mi)) {
err = -EINVAL;
goto out;
}
/* Look for required attribute. */
attr = mi_find_attr(mi, NULL, ATTR_DATA, NULL,
0, &le->id);
if (!attr) {
err = -EINVAL;
goto out;
}
goto next_attr;
}
le = (struct ATTR_LIST_ENTRY *)((u8 *)le - le_sz);
}
if (evcn1 >= alen)
break;
attr = ni_enum_attr_ex(ni, attr, &le, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
next_attr:
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
if (!attr_b) {
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL,
&mi_b);
if (!attr_b) {
err = -ENOENT;
goto out;
}
}
data_size -= bytes;
valid_size = ni->i_valid;
if (vbo + bytes <= valid_size)
valid_size -= bytes;
else if (vbo < valid_size)
valid_size = vbo;
attr_b->nres.alloc_size = cpu_to_le64(alloc_size - bytes);
attr_b->nres.data_size = cpu_to_le64(data_size);
attr_b->nres.valid_size = cpu_to_le64(min(valid_size, data_size));
total_size -= (u64)dealloc << sbi->cluster_bits;
if (is_attr_ext(attr_b))
attr_b->nres.total_size = cpu_to_le64(total_size);
mi_b->dirty = true;
/* Update inode size. */
ni->i_valid = valid_size;
ni->vfs_inode.i_size = data_size;
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
out:
up_write(&ni->file.run_lock);
if (err)
make_bad_inode(&ni->vfs_inode);
return err;
}
/*
* attr_punch_hole
*
* Not for normal files.
*/
int attr_punch_hole(struct ntfs_inode *ni, u64 vbo, u64 bytes, u32 *frame_size)
{
int err = 0;
struct runs_tree *run = &ni->file.run;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *attr = NULL, *attr_b;
struct ATTR_LIST_ENTRY *le, *le_b;
struct mft_inode *mi, *mi_b;
CLST svcn, evcn1, vcn, len, end, alen, dealloc;
u64 total_size, alloc_size;
u32 mask;
if (!bytes)
return 0;
le_b = NULL;
attr_b = ni_find_attr(ni, NULL, &le_b, ATTR_DATA, NULL, 0, NULL, &mi_b);
if (!attr_b)
return -ENOENT;
if (!attr_b->non_res) {
u32 data_size = le32_to_cpu(attr->res.data_size);
u32 from, to;
if (vbo > data_size)
return 0;
from = vbo;
to = min_t(u64, vbo + bytes, data_size);
memset(Add2Ptr(resident_data(attr_b), from), 0, to - from);
return 0;
}
if (!is_attr_ext(attr_b))
return -EOPNOTSUPP;
alloc_size = le64_to_cpu(attr_b->nres.alloc_size);
total_size = le64_to_cpu(attr_b->nres.total_size);
if (vbo >= alloc_size) {
/* NOTE: It is allowed. */
return 0;
}
mask = (sbi->cluster_size << attr_b->nres.c_unit) - 1;
bytes += vbo;
if (bytes > alloc_size)
bytes = alloc_size;
bytes -= vbo;
if ((vbo & mask) || (bytes & mask)) {
/* We have to zero a range(s). */
if (frame_size == NULL) {
/* Caller insists range is aligned. */
return -EINVAL;
}
*frame_size = mask + 1;
return E_NTFS_NOTALIGNED;
}
down_write(&ni->file.run_lock);
/*
* Enumerate all attribute segments and punch hole where necessary.
*/
alen = alloc_size >> sbi->cluster_bits;
vcn = vbo >> sbi->cluster_bits;
len = bytes >> sbi->cluster_bits;
end = vcn + len;
dealloc = 0;
svcn = le64_to_cpu(attr_b->nres.svcn);
evcn1 = le64_to_cpu(attr_b->nres.evcn) + 1;
if (svcn <= vcn && vcn < evcn1) {
attr = attr_b;
le = le_b;
mi = mi_b;
} else if (!le_b) {
err = -EINVAL;
goto out;
} else {
le = le_b;
attr = ni_find_attr(ni, attr_b, &le, ATTR_DATA, NULL, 0, &vcn,
&mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
while (svcn < end) {
CLST vcn1, zero, dealloc2;
err = attr_load_runs(attr, ni, run, &svcn);
if (err)
goto out;
vcn1 = max(vcn, svcn);
zero = min(end, evcn1) - vcn1;
dealloc2 = dealloc;
err = run_deallocate_ex(sbi, run, vcn1, zero, &dealloc, true);
if (err)
goto out;
if (dealloc2 == dealloc) {
/* Looks like the required range is already sparsed. */
} else {
if (!run_add_entry(run, vcn1, SPARSE_LCN, zero,
false)) {
err = -ENOMEM;
goto out;
}
err = mi_pack_runs(mi, attr, run, evcn1 - svcn);
if (err)
goto out;
}
/* Free all allocated memory. */
run_truncate(run, 0);
if (evcn1 >= alen)
break;
attr = ni_enum_attr_ex(ni, attr, &le, &mi);
if (!attr) {
err = -EINVAL;
goto out;
}
svcn = le64_to_cpu(attr->nres.svcn);
evcn1 = le64_to_cpu(attr->nres.evcn) + 1;
}
total_size -= (u64)dealloc << sbi->cluster_bits;
attr_b->nres.total_size = cpu_to_le64(total_size);
mi_b->dirty = true;
/* Update inode size. */
inode_set_bytes(&ni->vfs_inode, total_size);
ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
mark_inode_dirty(&ni->vfs_inode);
out:
up_write(&ni->file.run_lock);
if (err)
make_bad_inode(&ni->vfs_inode);
return err;
}