tmp_suning_uos_patched/drivers/kvm/vmx.c
Dor Laor 022a93080c [PATCH] KVM: Simplify test for interrupt window
No need to test for rflags.if as both VT and SVM specs assure us that on exit
caused from interrupt window opening, 'if' is set.

Signed-off-by: Dor Laor <dor.laor@qumranet.com>
Signed-off-by: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2007-01-05 23:55:28 -08:00

2052 lines
51 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "kvm.h"
#include "vmx.h"
#include "kvm_vmx.h"
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <asm/io.h>
#include <asm/desc.h>
#include "segment_descriptor.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
#ifdef CONFIG_X86_64
#define HOST_IS_64 1
#else
#define HOST_IS_64 0
#endif
static struct vmcs_descriptor {
int size;
int order;
u32 revision_id;
} vmcs_descriptor;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
#endif
MSR_EFER, MSR_K6_STAR,
};
#define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
static inline int is_page_fault(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
}
static inline int is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
{
int i;
for (i = 0; i < vcpu->nmsrs; ++i)
if (vcpu->guest_msrs[i].index == msr)
return &vcpu->guest_msrs[i];
return 0;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static void __vcpu_clear(void *arg)
{
struct kvm_vcpu *vcpu = arg;
int cpu = raw_smp_processor_id();
if (vcpu->cpu == cpu)
vmcs_clear(vcpu->vmcs);
if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
}
static unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (ASM_VMX_VMREAD_RDX_RAX
: "=a"(value) : "d"(field) : "cc");
return value;
}
static u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static void vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc" );
if (unlikely(error))
vmwrite_error(field, value);
}
static void vmcs_write16(unsigned long field, u16 value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, u32 value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, u64 value)
{
#ifdef CONFIG_X86_64
vmcs_writel(field, value);
#else
vmcs_writel(field, value);
asm volatile ("");
vmcs_writel(field+1, value >> 32);
#endif
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
{
u64 phys_addr = __pa(vcpu->vmcs);
int cpu;
cpu = get_cpu();
if (vcpu->cpu != cpu) {
smp_call_function(__vcpu_clear, vcpu, 0, 1);
vcpu->launched = 0;
}
if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
u8 error;
per_cpu(current_vmcs, cpu) = vcpu->vmcs;
asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
: "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
vcpu->vmcs, phys_addr);
}
if (vcpu->cpu != cpu) {
struct descriptor_table dt;
unsigned long sysenter_esp;
vcpu->cpu = cpu;
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
get_gdt(&dt);
vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
}
return vcpu;
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
put_cpu();
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
return vmcs_readl(GUEST_RFLAGS);
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
vmcs_writel(GUEST_RFLAGS, rflags);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
u32 interruptibility;
rip = vmcs_readl(GUEST_RIP);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs_writel(GUEST_RIP, rip);
/*
* We emulated an instruction, so temporary interrupt blocking
* should be removed, if set.
*/
interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
if (interruptibility & 3)
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
interruptibility & ~3);
vcpu->interrupt_window_open = 1;
}
static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
{
printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
vmcs_readl(GUEST_RIP));
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
GP_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset -- 21.3
*/
static u64 guest_read_tsc(void)
{
u64 host_tsc, tsc_offset;
rdtscll(host_tsc);
tsc_offset = vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* writes 'guest_tsc' into guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
*/
static void guest_write_tsc(u64 guest_tsc)
{
u64 host_tsc;
rdtscll(host_tsc);
vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
}
static void reload_tss(void)
{
#ifndef CONFIG_X86_64
/*
* VT restores TR but not its size. Useless.
*/
struct descriptor_table gdt;
struct segment_descriptor *descs;
get_gdt(&gdt);
descs = (void *)gdt.base;
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
load_TR_desc();
#endif
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
u64 data;
struct vmx_msr_entry *msr;
if (!pdata) {
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
return -EINVAL;
}
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_index, pdata);
#endif
case MSR_IA32_TIME_STAMP_COUNTER:
data = guest_read_tsc();
break;
case MSR_IA32_SYSENTER_CS:
data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
data = vmcs_read32(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
data = vmcs_read32(GUEST_SYSENTER_ESP);
break;
default:
msr = find_msr_entry(vcpu, msr_index);
if (msr) {
data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_index, pdata);
}
*pdata = data;
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vmx_msr_entry *msr;
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_EFER:
return kvm_set_msr_common(vcpu, msr_index, data);
case MSR_FS_BASE:
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmcs_writel(GUEST_GS_BASE, data);
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_write32(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_write32(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_TIME_STAMP_COUNTER: {
guest_write_tsc(data);
break;
}
default:
msr = find_msr_entry(vcpu, msr_index);
if (msr) {
msr->data = data;
break;
}
return kvm_set_msr_common(vcpu, msr_index, data);
msr->data = data;
break;
}
return 0;
}
/*
* Sync the rsp and rip registers into the vcpu structure. This allows
* registers to be accessed by indexing vcpu->regs.
*/
static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
{
vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
vcpu->rip = vmcs_readl(GUEST_RIP);
}
/*
* Syncs rsp and rip back into the vmcs. Should be called after possible
* modification.
*/
static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
vmcs_writel(GUEST_RIP, vcpu->rip);
}
static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
unsigned long dr7 = 0x400;
u32 exception_bitmap;
int old_singlestep;
exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
old_singlestep = vcpu->guest_debug.singlestep;
vcpu->guest_debug.enabled = dbg->enabled;
if (vcpu->guest_debug.enabled) {
int i;
dr7 |= 0x200; /* exact */
for (i = 0; i < 4; ++i) {
if (!dbg->breakpoints[i].enabled)
continue;
vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
dr7 |= 2 << (i*2); /* global enable */
dr7 |= 0 << (i*4+16); /* execution breakpoint */
}
exception_bitmap |= (1u << 1); /* Trap debug exceptions */
vcpu->guest_debug.singlestep = dbg->singlestep;
} else {
exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
vcpu->guest_debug.singlestep = 0;
}
if (old_singlestep && !vcpu->guest_debug.singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vmcs_writel(GUEST_RFLAGS, flags);
}
vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
vmcs_writel(GUEST_DR7, dr7);
return 0;
}
static __init int cpu_has_kvm_support(void)
{
unsigned long ecx = cpuid_ecx(1);
return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
return (msr & 5) == 1; /* locked but not enabled */
}
static __init void hardware_enable(void *garbage)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old;
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
if ((old & 5) != 5)
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
: "memory", "cc");
}
static void hardware_disable(void *garbage)
{
asm volatile (ASM_VMX_VMXOFF : : : "cc");
}
static __init void setup_vmcs_descriptor(void)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
vmcs_descriptor.size = vmx_msr_high & 0x1fff;
vmcs_descriptor.order = get_order(vmcs_descriptor.size);
vmcs_descriptor.revision_id = vmx_msr_low;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_descriptor.size);
vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_descriptor.order);
}
static __exit void free_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu)
free_vmcs(per_cpu(vmxarea, cpu));
}
extern struct vmcs *alloc_vmcs_cpu(int cpu);
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_online_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static __init int hardware_setup(void)
{
setup_vmcs_descriptor();
return alloc_kvm_area();
}
static __exit void hardware_unsetup(void)
{
free_kvm_area();
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
if (vcpu->rmode.active)
vmcs_write32(EXCEPTION_BITMAP, ~0);
else
vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
}
static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
if (vmcs_readl(sf->base) == save->base) {
vmcs_write16(sf->selector, save->selector);
vmcs_writel(sf->base, save->base);
vmcs_write32(sf->limit, save->limit);
vmcs_write32(sf->ar_bytes, save->ar);
} else {
u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
<< AR_DPL_SHIFT;
vmcs_write32(sf->ar_bytes, 0x93 | dpl);
}
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->rmode.active = 0;
vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
(vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
update_exception_bitmap(vcpu);
fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
vmcs_write16(GUEST_SS_SELECTOR, 0);
vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
vmcs_write16(GUEST_CS_SELECTOR,
vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
}
static int rmode_tss_base(struct kvm* kvm)
{
gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
return base_gfn << PAGE_SHIFT;
}
static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
save->selector = vmcs_read16(sf->selector);
save->base = vmcs_readl(sf->base);
save->limit = vmcs_read32(sf->limit);
save->ar = vmcs_read32(sf->ar_bytes);
vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0xf3);
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
vcpu->rmode.active = 1;
vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
flags |= IOPL_MASK | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
update_exception_bitmap(vcpu);
vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
vmcs_write32(GUEST_SS_LIMIT, 0xffff);
vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
__FUNCTION__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~AR_TYPE_MASK)
| AR_TYPE_BUSY_64_TSS);
}
vcpu->shadow_efer |= EFER_LMA;
find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
| VM_ENTRY_CONTROLS_IA32E_MASK);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vcpu->shadow_efer &= ~EFER_LMA;
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
& ~VM_ENTRY_CONTROLS_IA32E_MASK);
}
#endif
static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
vcpu->cr0 &= KVM_GUEST_CR0_MASK;
vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
vcpu->cr4 &= KVM_GUEST_CR4_MASK;
vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
}
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
enter_pmode(vcpu);
if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
enter_rmode(vcpu);
#ifdef CONFIG_X86_64
if (vcpu->shadow_efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
exit_lmode(vcpu);
}
#endif
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0,
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
vcpu->cr0 = cr0;
}
/*
* Used when restoring the VM to avoid corrupting segment registers
*/
static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
{
vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
update_exception_bitmap(vcpu);
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0,
(cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
vcpu->cr0 = cr0;
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
vmcs_writel(GUEST_CR3, cr3);
}
static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
vcpu->cr4 = cr4;
}
#ifdef CONFIG_X86_64
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
vcpu->shadow_efer = efer;
if (efer & EFER_LMA) {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) |
VM_ENTRY_CONTROLS_IA32E_MASK);
msr->data = efer;
} else {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) &
~VM_ENTRY_CONTROLS_IA32E_MASK);
msr->data = efer & ~EFER_LME;
}
}
#endif
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
return vmcs_readl(sf->base);
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
var->base = vmcs_readl(sf->base);
var->limit = vmcs_read32(sf->limit);
var->selector = vmcs_read16(sf->selector);
ar = vmcs_read32(sf->ar_bytes);
if (ar & AR_UNUSABLE_MASK)
ar = 0;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
var->present = (ar >> 7) & 1;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
var->unusable = (ar >> 16) & 1;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
u32 ar;
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
if (var->unusable)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
if (ar == 0) /* a 0 value means unusable */
ar = AR_UNUSABLE_MASK;
vmcs_write32(sf->ar_bytes, ar);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
dt->base = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_IDTR_BASE, dt->base);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
dt->base = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
vmcs_writel(GUEST_GDTR_BASE, dt->base);
}
static int init_rmode_tss(struct kvm* kvm)
{
struct page *p1, *p2, *p3;
gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
char *page;
p1 = _gfn_to_page(kvm, fn++);
p2 = _gfn_to_page(kvm, fn++);
p3 = _gfn_to_page(kvm, fn);
if (!p1 || !p2 || !p3) {
kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
return 0;
}
page = kmap_atomic(p1, KM_USER0);
memset(page, 0, PAGE_SIZE);
*(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
kunmap_atomic(page, KM_USER0);
page = kmap_atomic(p2, KM_USER0);
memset(page, 0, PAGE_SIZE);
kunmap_atomic(page, KM_USER0);
page = kmap_atomic(p3, KM_USER0);
memset(page, 0, PAGE_SIZE);
*(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
kunmap_atomic(page, KM_USER0);
return 1;
}
static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
{
u32 msr_high, msr_low;
rdmsr(msr, msr_low, msr_high);
val &= msr_high;
val |= msr_low;
vmcs_write32(vmcs_field, val);
}
static void seg_setup(int seg)
{
struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
vmcs_write32(sf->ar_bytes, 0x93);
}
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
{
u32 host_sysenter_cs;
u32 junk;
unsigned long a;
struct descriptor_table dt;
int i;
int ret = 0;
int nr_good_msrs;
extern asmlinkage void kvm_vmx_return(void);
if (!init_rmode_tss(vcpu->kvm)) {
ret = -ENOMEM;
goto out;
}
memset(vcpu->regs, 0, sizeof(vcpu->regs));
vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
vcpu->cr8 = 0;
vcpu->apic_base = 0xfee00000 |
/*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
MSR_IA32_APICBASE_ENABLE;
fx_init(vcpu);
/*
* GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
* insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
*/
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0x000f0000);
vmcs_write32(GUEST_CS_LIMIT, 0xffff);
vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_writel(GUEST_RFLAGS, 0x02);
vmcs_writel(GUEST_RIP, 0xfff0);
vmcs_writel(GUEST_RSP, 0);
//todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
vmcs_writel(GUEST_DR7, 0x400);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, 0);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
/* I/O */
vmcs_write64(IO_BITMAP_A, 0);
vmcs_write64(IO_BITMAP_B, 0);
guest_write_tsc(0);
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Special registers */
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
/* Control */
vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
| PIN_BASED_NMI_EXITING /* 20.6.1 */
);
vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_HLT_EXITING /* 20.6.2 */
| CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
| CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
| CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
| CPU_BASED_MOV_DR_EXITING
| CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
);
vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
get_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
rdmsrl(MSR_IA32_SYSENTER_ESP, a);
vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
rdmsrl(MSR_IA32_SYSENTER_EIP, a);
vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
for (i = 0; i < NR_VMX_MSR; ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
u64 data;
int j = vcpu->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
data = data_low | ((u64)data_high << 32);
vcpu->host_msrs[j].index = index;
vcpu->host_msrs[j].reserved = 0;
vcpu->host_msrs[j].data = data;
vcpu->guest_msrs[j] = vcpu->host_msrs[j];
++vcpu->nmsrs;
}
printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
(HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
/* 22.2.1, 20.8.1 */
vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_CONTROLS, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
#ifdef CONFIG_X86_64
vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
vmcs_writel(TPR_THRESHOLD, 0);
#endif
vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
vcpu->cr0 = 0x60000010;
vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
vmx_set_cr4(vcpu, 0);
#ifdef CONFIG_X86_64
vmx_set_efer(vcpu, 0);
#endif
return 0;
out:
return ret;
}
static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
{
u16 ent[2];
u16 cs;
u16 ip;
unsigned long flags;
unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
u16 sp = vmcs_readl(GUEST_RSP);
u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
if (sp > ss_limit || sp - 6 > sp) {
vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
__FUNCTION__,
vmcs_readl(GUEST_RSP),
vmcs_readl(GUEST_SS_BASE),
vmcs_read32(GUEST_SS_LIMIT));
return;
}
if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
sizeof(ent)) {
vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
return;
}
flags = vmcs_readl(GUEST_RFLAGS);
cs = vmcs_readl(GUEST_CS_BASE) >> 4;
ip = vmcs_readl(GUEST_RIP);
if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
return;
}
vmcs_writel(GUEST_RFLAGS, flags &
~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
vmcs_writel(GUEST_RIP, ent[0]);
vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
}
static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
{
int word_index = __ffs(vcpu->irq_summary);
int bit_index = __ffs(vcpu->irq_pending[word_index]);
int irq = word_index * BITS_PER_LONG + bit_index;
clear_bit(bit_index, &vcpu->irq_pending[word_index]);
if (!vcpu->irq_pending[word_index])
clear_bit(word_index, &vcpu->irq_summary);
if (vcpu->rmode.active) {
inject_rmode_irq(vcpu, irq);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static void do_interrupt_requests(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
u32 cpu_based_vm_exec_control;
vcpu->interrupt_window_open =
((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
if (vcpu->interrupt_window_open &&
vcpu->irq_summary &&
!(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
/*
* If interrupts enabled, and not blocked by sti or mov ss. Good.
*/
kvm_do_inject_irq(vcpu);
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
if (!vcpu->interrupt_window_open &&
(vcpu->irq_summary || kvm_run->request_interrupt_window))
/*
* Interrupts blocked. Wait for unblock.
*/
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
else
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
}
static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
{
struct kvm_guest_debug *dbg = &vcpu->guest_debug;
set_debugreg(dbg->bp[0], 0);
set_debugreg(dbg->bp[1], 1);
set_debugreg(dbg->bp[2], 2);
set_debugreg(dbg->bp[3], 3);
if (dbg->singlestep) {
unsigned long flags;
flags = vmcs_readl(GUEST_RFLAGS);
flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
vmcs_writel(GUEST_RFLAGS, flags);
}
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
if (!vcpu->rmode.active)
return 0;
if (vec == GP_VECTOR && err_code == 0)
if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
return 1;
return 0;
}
static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 intr_info, error_code;
unsigned long cr2, rip;
u32 vect_info;
enum emulation_result er;
int r;
vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!is_page_fault(intr_info)) {
printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
"intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
}
if (is_external_interrupt(vect_info)) {
int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
set_bit(irq, vcpu->irq_pending);
set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
}
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
asm ("int $2");
return 1;
}
error_code = 0;
rip = vmcs_readl(GUEST_RIP);
if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
if (is_page_fault(intr_info)) {
cr2 = vmcs_readl(EXIT_QUALIFICATION);
spin_lock(&vcpu->kvm->lock);
r = kvm_mmu_page_fault(vcpu, cr2, error_code);
if (r < 0) {
spin_unlock(&vcpu->kvm->lock);
return r;
}
if (!r) {
spin_unlock(&vcpu->kvm->lock);
return 1;
}
er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
spin_unlock(&vcpu->kvm->lock);
switch (er) {
case EMULATE_DONE:
return 1;
case EMULATE_DO_MMIO:
++kvm_stat.mmio_exits;
kvm_run->exit_reason = KVM_EXIT_MMIO;
return 0;
case EMULATE_FAIL:
vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
break;
default:
BUG();
}
}
if (vcpu->rmode.active &&
handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
error_code))
return 1;
if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
kvm_run->exit_reason = KVM_EXIT_DEBUG;
return 0;
}
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
kvm_run->ex.error_code = error_code;
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
++kvm_stat.irq_exits;
return 1;
}
static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
{
u64 inst;
gva_t rip;
int countr_size;
int i, n;
if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
countr_size = 2;
} else {
u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
countr_size = (cs_ar & AR_L_MASK) ? 8:
(cs_ar & AR_DB_MASK) ? 4: 2;
}
rip = vmcs_readl(GUEST_RIP);
if (countr_size != 8)
rip += vmcs_readl(GUEST_CS_BASE);
n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
for (i = 0; i < n; i++) {
switch (((u8*)&inst)[i]) {
case 0xf0:
case 0xf2:
case 0xf3:
case 0x2e:
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
case 0x66:
break;
case 0x67:
countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
default:
goto done;
}
}
return 0;
done:
countr_size *= 8;
*count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
return 1;
}
static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
++kvm_stat.io_exits;
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
kvm_run->exit_reason = KVM_EXIT_IO;
if (exit_qualification & 8)
kvm_run->io.direction = KVM_EXIT_IO_IN;
else
kvm_run->io.direction = KVM_EXIT_IO_OUT;
kvm_run->io.size = (exit_qualification & 7) + 1;
kvm_run->io.string = (exit_qualification & 16) != 0;
kvm_run->io.string_down
= (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
kvm_run->io.rep = (exit_qualification & 32) != 0;
kvm_run->io.port = exit_qualification >> 16;
if (kvm_run->io.string) {
if (!get_io_count(vcpu, &kvm_run->io.count))
return 1;
kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
} else
kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
return 0;
}
static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
int cr;
int reg;
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
vcpu_load_rsp_rip(vcpu);
set_cr0(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 3:
vcpu_load_rsp_rip(vcpu);
set_cr3(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 4:
vcpu_load_rsp_rip(vcpu);
set_cr4(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
case 8:
vcpu_load_rsp_rip(vcpu);
set_cr8(vcpu, vcpu->regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
};
break;
case 1: /*mov from cr*/
switch (cr) {
case 3:
vcpu_load_rsp_rip(vcpu);
vcpu->regs[reg] = vcpu->cr3;
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
case 8:
printk(KERN_DEBUG "handle_cr: read CR8 "
"cpu erratum AA15\n");
vcpu_load_rsp_rip(vcpu);
vcpu->regs[reg] = vcpu->cr8;
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
break;
case 3: /* lmsw */
lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
skip_emulated_instruction(vcpu);
return 1;
default:
break;
}
kvm_run->exit_reason = 0;
printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u64 exit_qualification;
unsigned long val;
int dr, reg;
/*
* FIXME: this code assumes the host is debugging the guest.
* need to deal with guest debugging itself too.
*/
exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
dr = exit_qualification & 7;
reg = (exit_qualification >> 8) & 15;
vcpu_load_rsp_rip(vcpu);
if (exit_qualification & 16) {
/* mov from dr */
switch (dr) {
case 6:
val = 0xffff0ff0;
break;
case 7:
val = 0x400;
break;
default:
val = 0;
}
vcpu->regs[reg] = val;
} else {
/* mov to dr */
}
vcpu_put_rsp_rip(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
kvm_run->exit_reason = KVM_EXIT_CPUID;
return 0;
}
static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data;
if (vmx_get_msr(vcpu, ecx, &data)) {
vmx_inject_gp(vcpu, 0);
return 1;
}
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->regs[VCPU_REGS_RAX] = data & -1u;
vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u32 ecx = vcpu->regs[VCPU_REGS_RCX];
u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
if (vmx_set_msr(vcpu, ecx, data) != 0) {
vmx_inject_gp(vcpu, 0);
return 1;
}
skip_emulated_instruction(vcpu);
return 1;
}
static void post_kvm_run_save(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
kvm_run->cr8 = vcpu->cr8;
kvm_run->apic_base = vcpu->apic_base;
kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
vcpu->irq_summary == 0);
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (kvm_run->request_interrupt_window &&
!vcpu->irq_summary) {
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
++kvm_stat.irq_window_exits;
return 0;
}
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
skip_emulated_instruction(vcpu);
if (vcpu->irq_summary)
return 1;
kvm_run->exit_reason = KVM_EXIT_HLT;
++kvm_stat.halt_exits;
return 0;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
};
static const int kvm_vmx_max_exit_handlers =
sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
exit_reason != EXIT_REASON_EXCEPTION_NMI )
printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
"exit reason is 0x%x\n", __FUNCTION__, exit_reason);
kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
else {
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
kvm_run->hw.hardware_exit_reason = exit_reason;
}
return 0;
}
/*
* Check if userspace requested an interrupt window, and that the
* interrupt window is open.
*
* No need to exit to userspace if we already have an interrupt queued.
*/
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
struct kvm_run *kvm_run)
{
return (!vcpu->irq_summary &&
kvm_run->request_interrupt_window &&
vcpu->interrupt_window_open &&
(vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
}
static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
u8 fail;
u16 fs_sel, gs_sel, ldt_sel;
int fs_gs_ldt_reload_needed;
int r;
again:
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
fs_sel = read_fs();
gs_sel = read_gs();
ldt_sel = read_ldt();
fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
if (!fs_gs_ldt_reload_needed) {
vmcs_write16(HOST_FS_SELECTOR, fs_sel);
vmcs_write16(HOST_GS_SELECTOR, gs_sel);
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmcs_write16(HOST_GS_SELECTOR, 0);
}
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
#endif
do_interrupt_requests(vcpu, kvm_run);
if (vcpu->guest_debug.enabled)
kvm_guest_debug_pre(vcpu);
fx_save(vcpu->host_fx_image);
fx_restore(vcpu->guest_fx_image);
save_msrs(vcpu->host_msrs, vcpu->nmsrs);
load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
asm (
/* Store host registers */
"pushf \n\t"
#ifdef CONFIG_X86_64
"push %%rax; push %%rbx; push %%rdx;"
"push %%rsi; push %%rdi; push %%rbp;"
"push %%r8; push %%r9; push %%r10; push %%r11;"
"push %%r12; push %%r13; push %%r14; push %%r15;"
"push %%rcx \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
#else
"pusha; push %%ecx \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
#endif
/* Check if vmlaunch of vmresume is needed */
"cmp $0, %1 \n\t"
/* Load guest registers. Don't clobber flags. */
#ifdef CONFIG_X86_64
"mov %c[cr2](%3), %%rax \n\t"
"mov %%rax, %%cr2 \n\t"
"mov %c[rax](%3), %%rax \n\t"
"mov %c[rbx](%3), %%rbx \n\t"
"mov %c[rdx](%3), %%rdx \n\t"
"mov %c[rsi](%3), %%rsi \n\t"
"mov %c[rdi](%3), %%rdi \n\t"
"mov %c[rbp](%3), %%rbp \n\t"
"mov %c[r8](%3), %%r8 \n\t"
"mov %c[r9](%3), %%r9 \n\t"
"mov %c[r10](%3), %%r10 \n\t"
"mov %c[r11](%3), %%r11 \n\t"
"mov %c[r12](%3), %%r12 \n\t"
"mov %c[r13](%3), %%r13 \n\t"
"mov %c[r14](%3), %%r14 \n\t"
"mov %c[r15](%3), %%r15 \n\t"
"mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
#else
"mov %c[cr2](%3), %%eax \n\t"
"mov %%eax, %%cr2 \n\t"
"mov %c[rax](%3), %%eax \n\t"
"mov %c[rbx](%3), %%ebx \n\t"
"mov %c[rdx](%3), %%edx \n\t"
"mov %c[rsi](%3), %%esi \n\t"
"mov %c[rdi](%3), %%edi \n\t"
"mov %c[rbp](%3), %%ebp \n\t"
"mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
#endif
/* Enter guest mode */
"jne launched \n\t"
ASM_VMX_VMLAUNCH "\n\t"
"jmp kvm_vmx_return \n\t"
"launched: " ASM_VMX_VMRESUME "\n\t"
".globl kvm_vmx_return \n\t"
"kvm_vmx_return: "
/* Save guest registers, load host registers, keep flags */
#ifdef CONFIG_X86_64
"xchg %3, 0(%%rsp) \n\t"
"mov %%rax, %c[rax](%3) \n\t"
"mov %%rbx, %c[rbx](%3) \n\t"
"pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
"mov %%rdx, %c[rdx](%3) \n\t"
"mov %%rsi, %c[rsi](%3) \n\t"
"mov %%rdi, %c[rdi](%3) \n\t"
"mov %%rbp, %c[rbp](%3) \n\t"
"mov %%r8, %c[r8](%3) \n\t"
"mov %%r9, %c[r9](%3) \n\t"
"mov %%r10, %c[r10](%3) \n\t"
"mov %%r11, %c[r11](%3) \n\t"
"mov %%r12, %c[r12](%3) \n\t"
"mov %%r13, %c[r13](%3) \n\t"
"mov %%r14, %c[r14](%3) \n\t"
"mov %%r15, %c[r15](%3) \n\t"
"mov %%cr2, %%rax \n\t"
"mov %%rax, %c[cr2](%3) \n\t"
"mov 0(%%rsp), %3 \n\t"
"pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
"pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
"pop %%rbp; pop %%rdi; pop %%rsi;"
"pop %%rdx; pop %%rbx; pop %%rax \n\t"
#else
"xchg %3, 0(%%esp) \n\t"
"mov %%eax, %c[rax](%3) \n\t"
"mov %%ebx, %c[rbx](%3) \n\t"
"pushl 0(%%esp); popl %c[rcx](%3) \n\t"
"mov %%edx, %c[rdx](%3) \n\t"
"mov %%esi, %c[rsi](%3) \n\t"
"mov %%edi, %c[rdi](%3) \n\t"
"mov %%ebp, %c[rbp](%3) \n\t"
"mov %%cr2, %%eax \n\t"
"mov %%eax, %c[cr2](%3) \n\t"
"mov 0(%%esp), %3 \n\t"
"pop %%ecx; popa \n\t"
#endif
"setbe %0 \n\t"
"popf \n\t"
: "=g" (fail)
: "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
"c"(vcpu),
[rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
[r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
[r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct kvm_vcpu, cr2))
: "cc", "memory" );
++kvm_stat.exits;
save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
#ifndef CONFIG_X86_64
asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
#endif
kvm_run->exit_type = 0;
if (fail) {
kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
r = 0;
} else {
if (fs_gs_ldt_reload_needed) {
load_ldt(ldt_sel);
load_fs(fs_sel);
/*
* If we have to reload gs, we must take care to
* preserve our gs base.
*/
local_irq_disable();
load_gs(gs_sel);
#ifdef CONFIG_X86_64
wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
#endif
local_irq_enable();
reload_tss();
}
vcpu->launched = 1;
kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
r = kvm_handle_exit(kvm_run, vcpu);
if (r > 0) {
/* Give scheduler a change to reschedule. */
if (signal_pending(current)) {
++kvm_stat.signal_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
if (dm_request_for_irq_injection(vcpu, kvm_run)) {
++kvm_stat.request_irq_exits;
post_kvm_run_save(vcpu, kvm_run);
return -EINTR;
}
kvm_resched(vcpu);
goto again;
}
}
post_kvm_run_save(vcpu, kvm_run);
return r;
}
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
}
static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
unsigned long addr,
u32 err_code)
{
u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
++kvm_stat.pf_guest;
if (is_page_fault(vect_info)) {
printk(KERN_DEBUG "inject_page_fault: "
"double fault 0x%lx @ 0x%lx\n",
addr, vmcs_readl(GUEST_RIP));
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
DF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
return;
}
vcpu->cr2 = addr;
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
PF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIEVER_CODE_MASK |
INTR_INFO_VALID_MASK);
}
static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
{
if (vcpu->vmcs) {
on_each_cpu(__vcpu_clear, vcpu, 0, 1);
free_vmcs(vcpu->vmcs);
vcpu->vmcs = NULL;
}
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
vmx_free_vmcs(vcpu);
}
static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
{
struct vmcs *vmcs;
vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vcpu->guest_msrs)
return -ENOMEM;
vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!vcpu->host_msrs)
goto out_free_guest_msrs;
vmcs = alloc_vmcs();
if (!vmcs)
goto out_free_msrs;
vmcs_clear(vmcs);
vcpu->vmcs = vmcs;
vcpu->launched = 0;
return 0;
out_free_msrs:
kfree(vcpu->host_msrs);
vcpu->host_msrs = NULL;
out_free_guest_msrs:
kfree(vcpu->guest_msrs);
vcpu->guest_msrs = NULL;
return -ENOMEM;
}
static struct kvm_arch_ops vmx_arch_ops = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.set_guest_debug = set_guest_debug,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
#ifdef CONFIG_X86_64
.set_efer = vmx_set_efer,
#endif
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.cache_regs = vcpu_load_rsp_rip,
.decache_regs = vcpu_put_rsp_rip,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.tlb_flush = vmx_flush_tlb,
.inject_page_fault = vmx_inject_page_fault,
.inject_gp = vmx_inject_gp,
.run = vmx_vcpu_run,
.skip_emulated_instruction = skip_emulated_instruction,
.vcpu_setup = vmx_vcpu_setup,
};
static int __init vmx_init(void)
{
return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
}
static void __exit vmx_exit(void)
{
kvm_exit_arch();
}
module_init(vmx_init)
module_exit(vmx_exit)