tmp_suning_uos_patched/drivers/net/fs_enet/mac-fcc.c
Jean Delvare 6473d160b4 PCI: Cleanup the includes of <linux/pci.h>
I noticed that many source files include <linux/pci.h> while they do
not appear to need it. Here is an attempt to clean it all up.

In order to find all possibly affected files, I searched for all
files including <linux/pci.h> but without any other occurence of "pci"
or "PCI". I removed the include statement from all of these, then I
compiled an allmodconfig kernel on both i386 and x86_64 and fixed the
false positives manually.

My tests covered 66% of the affected files, so there could be false
positives remaining. Untested files are:

arch/alpha/kernel/err_common.c
arch/alpha/kernel/err_ev6.c
arch/alpha/kernel/err_ev7.c
arch/ia64/sn/kernel/huberror.c
arch/ia64/sn/kernel/xpnet.c
arch/m68knommu/kernel/dma.c
arch/mips/lib/iomap.c
arch/powerpc/platforms/pseries/ras.c
arch/ppc/8260_io/enet.c
arch/ppc/8260_io/fcc_enet.c
arch/ppc/8xx_io/enet.c
arch/ppc/syslib/ppc4xx_sgdma.c
arch/sh64/mach-cayman/iomap.c
arch/xtensa/kernel/xtensa_ksyms.c
arch/xtensa/platform-iss/setup.c
drivers/i2c/busses/i2c-at91.c
drivers/i2c/busses/i2c-mpc.c
drivers/media/video/saa711x.c
drivers/misc/hdpuftrs/hdpu_cpustate.c
drivers/misc/hdpuftrs/hdpu_nexus.c
drivers/net/au1000_eth.c
drivers/net/fec_8xx/fec_main.c
drivers/net/fec_8xx/fec_mii.c
drivers/net/fs_enet/fs_enet-main.c
drivers/net/fs_enet/mac-fcc.c
drivers/net/fs_enet/mac-fec.c
drivers/net/fs_enet/mac-scc.c
drivers/net/fs_enet/mii-bitbang.c
drivers/net/fs_enet/mii-fec.c
drivers/net/ibm_emac/ibm_emac_core.c
drivers/net/lasi_82596.c
drivers/parisc/hppb.c
drivers/sbus/sbus.c
drivers/video/g364fb.c
drivers/video/platinumfb.c
drivers/video/stifb.c
drivers/video/valkyriefb.c
include/asm-arm/arch-ixp4xx/dma.h
sound/oss/au1550_ac97.c

I would welcome test reports for these files. I am fine with removing
the untested files from the patch if the general opinion is that these
changes aren't safe. The tested part would still be nice to have.

Note that this patch depends on another header fixup patch I submitted
to LKML yesterday:
  [PATCH] scatterlist.h needs types.h
  http://lkml.org/lkml/2007/3/01/141

Signed-off-by: Jean Delvare <khali@linux-fr.org>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-05-02 19:02:35 -07:00

591 lines
15 KiB
C

/*
* FCC driver for Motorola MPC82xx (PQ2).
*
* Copyright (c) 2003 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/phy.h>
#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include "fs_enet.h"
/*************************************************/
/* FCC access macros */
#define __fcc_out32(addr, x) out_be32((unsigned *)addr, x)
#define __fcc_out16(addr, x) out_be16((unsigned short *)addr, x)
#define __fcc_out8(addr, x) out_8((unsigned char *)addr, x)
#define __fcc_in32(addr) in_be32((unsigned *)addr)
#define __fcc_in16(addr) in_be16((unsigned short *)addr)
#define __fcc_in8(addr) in_8((unsigned char *)addr)
/* parameter space */
/* write, read, set bits, clear bits */
#define W32(_p, _m, _v) __fcc_out32(&(_p)->_m, (_v))
#define R32(_p, _m) __fcc_in32(&(_p)->_m)
#define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
#define W16(_p, _m, _v) __fcc_out16(&(_p)->_m, (_v))
#define R16(_p, _m) __fcc_in16(&(_p)->_m)
#define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
#define W8(_p, _m, _v) __fcc_out8(&(_p)->_m, (_v))
#define R8(_p, _m) __fcc_in8(&(_p)->_m)
#define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
/*************************************************/
#define FCC_MAX_MULTICAST_ADDRS 64
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end 0
#define MAX_CR_CMD_LOOPS 10000
static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 mcn, u32 op)
{
const struct fs_platform_info *fpi = fep->fpi;
cpm2_map_t *immap = fs_enet_immap;
cpm_cpm2_t *cpmp = &immap->im_cpm;
u32 v;
int i;
/* Currently I don't know what feature call will look like. But
I guess there'd be something like do_cpm_cmd() which will require page & sblock */
v = mk_cr_cmd(fpi->cp_page, fpi->cp_block, mcn, op);
W32(cpmp, cp_cpcr, v | CPM_CR_FLG);
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
if ((R32(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
break;
if (i >= MAX_CR_CMD_LOOPS) {
printk(KERN_ERR "%s(): Not able to issue CPM command\n",
__FUNCTION__);
return 1;
}
return 0;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct platform_device *pdev = to_platform_device(fep->dev);
struct resource *r;
/* Fill out IRQ field */
fep->interrupt = platform_get_irq(pdev, 0);
if (fep->interrupt < 0)
return -EINVAL;
/* Attach the memory for the FCC Parameter RAM */
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
fep->fcc.ep = (void *)ioremap(r->start, r->end - r->start + 1);
if (fep->fcc.ep == NULL)
return -EINVAL;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
fep->fcc.fccp = (void *)ioremap(r->start, r->end - r->start + 1);
if (fep->fcc.fccp == NULL)
return -EINVAL;
if (fep->fpi->fcc_regs_c) {
fep->fcc.fcccp = (void *)fep->fpi->fcc_regs_c;
} else {
r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"fcc_regs_c");
fep->fcc.fcccp = (void *)ioremap(r->start,
r->end - r->start + 1);
}
if (fep->fcc.fcccp == NULL)
return -EINVAL;
fep->fcc.mem = (void *)fep->fpi->mem_offset;
if (fep->fcc.mem == NULL)
return -EINVAL;
return 0;
}
#define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
#define FCC_RX_EVENT (FCC_ENET_RXF)
#define FCC_TX_EVENT (FCC_ENET_TXB)
#define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
if ((unsigned int)fep->fcc.idx >= 3) /* max 3 FCCs */
return -EINVAL;
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FCC_RX_EVENT;
fep->ev_tx = FCC_TX_EVENT;
fep->ev_err = FCC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if (fep->ring_base)
dma_free_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
fep->ring_base, fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t *ep = fep->fcc.ep;
W32(ep, fen_gaddrh, 0);
W32(ep, fen_gaddrl, 0);
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_enet_t *ep = fep->fcc.ep;
u16 taddrh, taddrm, taddrl;
taddrh = ((u16)mac[5] << 8) | mac[4];
taddrm = ((u16)mac[3] << 8) | mac[2];
taddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_taddrh, taddrh);
W16(ep, fen_taddrm, taddrm);
W16(ep, fen_taddrl, taddrl);
fcc_cr_cmd(fep, 0x0C, CPM_CR_SET_GADDR);
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
fcc_enet_t *ep = fep->fcc.ep;
/* clear promiscuous always */
C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {
W32(ep, fen_gaddrh, 0xffffffff);
W32(ep, fen_gaddrl, 0xffffffff);
}
/* read back */
fep->fcc.gaddrh = R32(ep, fen_gaddrh);
fep->fcc.gaddrl = R32(ep, fen_gaddrl);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fcc_t *fccp = fep->fcc.fccp;
fcc_c_t *fcccp = fep->fcc.fcccp;
fcc_enet_t *ep = fep->fcc.ep;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
u16 paddrh, paddrm, paddrl;
u16 mem_addr;
const unsigned char *mac;
int i;
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear everything (slow & steady does it) */
for (i = 0; i < sizeof(*ep); i++)
__fcc_out8((char *)ep + i, 0);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/* point to bds */
W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
mem_addr = (u32) fep->fcc.mem; /* de-fixup dpram offset */
W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
W16(ep, fen_padptr, mem_addr + 64);
/* fill with special symbol... */
memset(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
W32(ep, fen_genfcc.fcc_rbptr, 0);
W32(ep, fen_genfcc.fcc_tbptr, 0);
W32(ep, fen_genfcc.fcc_rcrc, 0);
W32(ep, fen_genfcc.fcc_tcrc, 0);
W16(ep, fen_genfcc.fcc_res1, 0);
W32(ep, fen_genfcc.fcc_res2, 0);
/* no CAM */
W32(ep, fen_camptr, 0);
/* Set CRC preset and mask */
W32(ep, fen_cmask, 0xdebb20e3);
W32(ep, fen_cpres, 0xffffffff);
W32(ep, fen_crcec, 0); /* CRC Error counter */
W32(ep, fen_alec, 0); /* alignment error counter */
W32(ep, fen_disfc, 0); /* discard frame counter */
W16(ep, fen_retlim, 15); /* Retry limit threshold */
W16(ep, fen_pper, 0); /* Normal persistence */
/* set group address */
W32(ep, fen_gaddrh, fep->fcc.gaddrh);
W32(ep, fen_gaddrl, fep->fcc.gaddrh);
/* Clear hash filter tables */
W32(ep, fen_iaddrh, 0);
W32(ep, fen_iaddrl, 0);
/* Clear the Out-of-sequence TxBD */
W16(ep, fen_tfcstat, 0);
W16(ep, fen_tfclen, 0);
W32(ep, fen_tfcptr, 0);
W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
/* set address */
mac = dev->dev_addr;
paddrh = ((u16)mac[5] << 8) | mac[4];
paddrm = ((u16)mac[3] << 8) | mac[2];
paddrl = ((u16)mac[1] << 8) | mac[0];
W16(ep, fen_paddrh, paddrh);
W16(ep, fen_paddrm, paddrm);
W16(ep, fen_paddrl, paddrl);
W16(ep, fen_taddrh, 0);
W16(ep, fen_taddrm, 0);
W16(ep, fen_taddrl, 0);
W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON */
W32(ep, fen_octc, 0);
W32(ep, fen_colc, 0);
W32(ep, fen_broc, 0);
W32(ep, fen_mulc, 0);
W32(ep, fen_uspc, 0);
W32(ep, fen_frgc, 0);
W32(ep, fen_ospc, 0);
W32(ep, fen_jbrc, 0);
W32(ep, fen_p64c, 0);
W32(ep, fen_p65c, 0);
W32(ep, fen_p128c, 0);
W32(ep, fen_p256c, 0);
W32(ep, fen_p512c, 0);
W32(ep, fen_p1024c, 0);
W16(ep, fen_rfthr, 0); /* Suggested by manual */
W16(ep, fen_rfcnt, 0);
W16(ep, fen_cftype, 0);
fs_init_bds(dev);
/* adjust to speed (for RMII mode) */
if (fpi->use_rmii) {
if (fep->phydev->speed == 100)
C8(fcccp, fcc_gfemr, 0x20);
else
S8(fcccp, fcc_gfemr, 0x20);
}
fcc_cr_cmd(fep, 0x0c, CPM_CR_INIT_TRX);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* Enable interrupts we wish to service */
W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Set GFMR to enable Ethernet operating mode */
W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* set sync/delimiters */
W16(fccp, fcc_fdsr, 0xd555);
W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
if (fpi->use_rmii)
S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
/* adjust to duplex mode */
if (fep->phydev->duplex)
S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
else
C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
/* stop ethernet */
C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
/* clear events */
W16(fccp, fcc_fcce, 0xffff);
/* clear interrupt mask */
W16(fccp, fcc_fccm, 0);
fs_cleanup_bds(dev);
}
static void pre_request_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void post_free_irq(struct net_device *dev, int irq)
{
/* nothing */
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
/* nothing */
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
S32(fccp, fcc_ftodr, 0x80);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
return (u32)R16(fccp, fcc_fcce);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
W16(fccp, fcc_fcce, int_events & 0xffff);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
}
int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t))
return -EINVAL;
memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
p = (char *)p + sizeof(fcc_t);
memcpy_fromio(p, fep->fcc.fcccp, sizeof(fcc_c_t));
p = (char *)p + sizeof(fcc_c_t);
memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
return 0;
}
int get_regs_len(struct net_device *dev)
{
return sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t);
}
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
void tx_restart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fcc_t *fccp = fep->fcc.fccp;
C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
udelay(10);
S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
fcc_cr_cmd(fep, 0x0C, CPM_CR_RESTART_TX);
}
/*************************************************************************/
const struct fs_ops fs_fcc_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.pre_request_irq = pre_request_irq,
.post_free_irq = post_free_irq,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};