tmp_suning_uos_patched/block/bsg-lib.c
Benjamin Block eab40cf336 bsg-lib: fix use-after-free under memory-pressure
When under memory-pressure it is possible that the mempool which backs
the 'struct request_queue' will make use of up to BLKDEV_MIN_RQ count
emergency buffers - in case it can't get a regular allocation. These
buffers are preallocated and once they are also used, they are
re-supplied with old finished requests from the same request_queue (see
mempool_free()).

The bug is, when re-supplying the emergency pool, the old requests are
not again ran through the callback mempool_t->alloc(), and thus also not
through the callback bsg_init_rq(). Thus we skip initialization, and
while the sense-buffer still should be good, scsi_request->cmd might
have become to be an invalid pointer in the meantime. When the request
is initialized in bsg.c, and the user's CDB is larger than BLK_MAX_CDB,
bsg will replace it with a custom allocated buffer, which is freed when
the user's command is finished, thus it dangles afterwards. When next a
command is sent by the user that has a smaller/similar CDB as
BLK_MAX_CDB, bsg will assume that scsi_request->cmd is backed by
scsi_request->__cmd, will not make a custom allocation, and write into
undefined memory.

Fix this by splitting bsg_init_rq() into two functions:
 - bsg_init_rq() is changed to only do the allocation of the
   sense-buffer, which is used to back the bsg job's reply buffer. This
   pointer should never change during the lifetime of a scsi_request, so
   it doesn't need re-initialization.
 - bsg_initialize_rq() is a new function that makes use of
   'struct request_queue's initialize_rq_fn callback (which was
   introduced in v4.12). This is always called before the request is
   given out via blk_get_request(). This function does the remaining
   initialization that was previously done in bsg_init_rq(), and will
   also do it when the request is taken from the emergency-pool of the
   backing mempool.

Fixes: 50b4d48552 ("bsg-lib: fix kernel panic resulting from missing allocation of reply-buffer")
Cc: <stable@vger.kernel.org> # 4.11+
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-04 08:35:04 -06:00

295 lines
7.5 KiB
C

/*
* BSG helper library
*
* Copyright (C) 2008 James Smart, Emulex Corporation
* Copyright (C) 2011 Red Hat, Inc. All rights reserved.
* Copyright (C) 2011 Mike Christie
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/bsg-lib.h>
#include <linux/export.h>
#include <scsi/scsi_cmnd.h>
/**
* bsg_teardown_job - routine to teardown a bsg job
* @job: bsg_job that is to be torn down
*/
static void bsg_teardown_job(struct kref *kref)
{
struct bsg_job *job = container_of(kref, struct bsg_job, kref);
struct request *rq = job->req;
put_device(job->dev); /* release reference for the request */
kfree(job->request_payload.sg_list);
kfree(job->reply_payload.sg_list);
blk_end_request_all(rq, BLK_STS_OK);
}
void bsg_job_put(struct bsg_job *job)
{
kref_put(&job->kref, bsg_teardown_job);
}
EXPORT_SYMBOL_GPL(bsg_job_put);
int bsg_job_get(struct bsg_job *job)
{
return kref_get_unless_zero(&job->kref);
}
EXPORT_SYMBOL_GPL(bsg_job_get);
/**
* bsg_job_done - completion routine for bsg requests
* @job: bsg_job that is complete
* @result: job reply result
* @reply_payload_rcv_len: length of payload recvd
*
* The LLD should call this when the bsg job has completed.
*/
void bsg_job_done(struct bsg_job *job, int result,
unsigned int reply_payload_rcv_len)
{
struct request *req = job->req;
struct request *rsp = req->next_rq;
struct scsi_request *rq = scsi_req(req);
int err;
err = scsi_req(job->req)->result = result;
if (err < 0)
/* we're only returning the result field in the reply */
rq->sense_len = sizeof(u32);
else
rq->sense_len = job->reply_len;
/* we assume all request payload was transferred, residual == 0 */
rq->resid_len = 0;
if (rsp) {
WARN_ON(reply_payload_rcv_len > scsi_req(rsp)->resid_len);
/* set reply (bidi) residual */
scsi_req(rsp)->resid_len -=
min(reply_payload_rcv_len, scsi_req(rsp)->resid_len);
}
blk_complete_request(req);
}
EXPORT_SYMBOL_GPL(bsg_job_done);
/**
* bsg_softirq_done - softirq done routine for destroying the bsg requests
* @rq: BSG request that holds the job to be destroyed
*/
static void bsg_softirq_done(struct request *rq)
{
struct bsg_job *job = blk_mq_rq_to_pdu(rq);
bsg_job_put(job);
}
static int bsg_map_buffer(struct bsg_buffer *buf, struct request *req)
{
size_t sz = (sizeof(struct scatterlist) * req->nr_phys_segments);
BUG_ON(!req->nr_phys_segments);
buf->sg_list = kzalloc(sz, GFP_KERNEL);
if (!buf->sg_list)
return -ENOMEM;
sg_init_table(buf->sg_list, req->nr_phys_segments);
scsi_req(req)->resid_len = blk_rq_bytes(req);
buf->sg_cnt = blk_rq_map_sg(req->q, req, buf->sg_list);
buf->payload_len = blk_rq_bytes(req);
return 0;
}
/**
* bsg_prepare_job - create the bsg_job structure for the bsg request
* @dev: device that is being sent the bsg request
* @req: BSG request that needs a job structure
*/
static int bsg_prepare_job(struct device *dev, struct request *req)
{
struct request *rsp = req->next_rq;
struct scsi_request *rq = scsi_req(req);
struct bsg_job *job = blk_mq_rq_to_pdu(req);
int ret;
job->request = rq->cmd;
job->request_len = rq->cmd_len;
if (req->bio) {
ret = bsg_map_buffer(&job->request_payload, req);
if (ret)
goto failjob_rls_job;
}
if (rsp && rsp->bio) {
ret = bsg_map_buffer(&job->reply_payload, rsp);
if (ret)
goto failjob_rls_rqst_payload;
}
job->dev = dev;
/* take a reference for the request */
get_device(job->dev);
kref_init(&job->kref);
return 0;
failjob_rls_rqst_payload:
kfree(job->request_payload.sg_list);
failjob_rls_job:
return -ENOMEM;
}
/**
* bsg_request_fn - generic handler for bsg requests
* @q: request queue to manage
*
* On error the create_bsg_job function should return a -Exyz error value
* that will be set to ->result.
*
* Drivers/subsys should pass this to the queue init function.
*/
static void bsg_request_fn(struct request_queue *q)
__releases(q->queue_lock)
__acquires(q->queue_lock)
{
struct device *dev = q->queuedata;
struct request *req;
int ret;
if (!get_device(dev))
return;
while (1) {
req = blk_fetch_request(q);
if (!req)
break;
spin_unlock_irq(q->queue_lock);
ret = bsg_prepare_job(dev, req);
if (ret) {
scsi_req(req)->result = ret;
blk_end_request_all(req, BLK_STS_OK);
spin_lock_irq(q->queue_lock);
continue;
}
ret = q->bsg_job_fn(blk_mq_rq_to_pdu(req));
spin_lock_irq(q->queue_lock);
if (ret)
break;
}
spin_unlock_irq(q->queue_lock);
put_device(dev);
spin_lock_irq(q->queue_lock);
}
static int bsg_init_rq(struct request_queue *q, struct request *req, gfp_t gfp)
{
struct bsg_job *job = blk_mq_rq_to_pdu(req);
struct scsi_request *sreq = &job->sreq;
/* called right after the request is allocated for the request_queue */
sreq->sense = kzalloc(SCSI_SENSE_BUFFERSIZE, gfp);
if (!sreq->sense)
return -ENOMEM;
return 0;
}
static void bsg_initialize_rq(struct request *req)
{
struct bsg_job *job = blk_mq_rq_to_pdu(req);
struct scsi_request *sreq = &job->sreq;
void *sense = sreq->sense;
/* called right before the request is given to the request_queue user */
memset(job, 0, sizeof(*job));
scsi_req_init(sreq);
sreq->sense = sense;
sreq->sense_len = SCSI_SENSE_BUFFERSIZE;
job->req = req;
job->reply = sense;
job->reply_len = sreq->sense_len;
job->dd_data = job + 1;
}
static void bsg_exit_rq(struct request_queue *q, struct request *req)
{
struct bsg_job *job = blk_mq_rq_to_pdu(req);
struct scsi_request *sreq = &job->sreq;
kfree(sreq->sense);
}
/**
* bsg_setup_queue - Create and add the bsg hooks so we can receive requests
* @dev: device to attach bsg device to
* @name: device to give bsg device
* @job_fn: bsg job handler
* @dd_job_size: size of LLD data needed for each job
*/
struct request_queue *bsg_setup_queue(struct device *dev, const char *name,
bsg_job_fn *job_fn, int dd_job_size,
void (*release)(struct device *))
{
struct request_queue *q;
int ret;
q = blk_alloc_queue(GFP_KERNEL);
if (!q)
return ERR_PTR(-ENOMEM);
q->cmd_size = sizeof(struct bsg_job) + dd_job_size;
q->init_rq_fn = bsg_init_rq;
q->exit_rq_fn = bsg_exit_rq;
q->initialize_rq_fn = bsg_initialize_rq;
q->request_fn = bsg_request_fn;
ret = blk_init_allocated_queue(q);
if (ret)
goto out_cleanup_queue;
q->queuedata = dev;
q->bsg_job_fn = job_fn;
queue_flag_set_unlocked(QUEUE_FLAG_BIDI, q);
queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
blk_queue_softirq_done(q, bsg_softirq_done);
blk_queue_rq_timeout(q, BLK_DEFAULT_SG_TIMEOUT);
ret = bsg_register_queue(q, dev, name, release);
if (ret) {
printk(KERN_ERR "%s: bsg interface failed to "
"initialize - register queue\n", dev->kobj.name);
goto out_cleanup_queue;
}
return q;
out_cleanup_queue:
blk_cleanup_queue(q);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(bsg_setup_queue);