tmp_suning_uos_patched/crypto/asymmetric_keys/x509_public_key.c
Dmitry Kasatkin 7a224e783a KEYS: strip 'id:' from ca_keyid
The 'id:' prefix must be stripped for asymmetric_key_hex_to_key_id() to be
able to process ca_keyid.

Signed-off-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: David Howells <dhowells@redhat.com>
2014-10-06 17:33:27 +01:00

365 lines
9.2 KiB
C

/* Instantiate a public key crypto key from an X.509 Certificate
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#define pr_fmt(fmt) "X.509: "fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/mpi.h>
#include <linux/asn1_decoder.h>
#include <keys/asymmetric-subtype.h>
#include <keys/asymmetric-parser.h>
#include <keys/system_keyring.h>
#include <crypto/hash.h>
#include "asymmetric_keys.h"
#include "public_key.h"
#include "x509_parser.h"
static bool use_builtin_keys;
static struct asymmetric_key_id *ca_keyid;
#ifndef MODULE
static int __init ca_keys_setup(char *str)
{
if (!str) /* default system keyring */
return 1;
if (strncmp(str, "id:", 3) == 0) {
struct asymmetric_key_id *p;
p = asymmetric_key_hex_to_key_id(str + 3);
if (p == ERR_PTR(-EINVAL))
pr_err("Unparsable hex string in ca_keys\n");
else if (!IS_ERR(p))
ca_keyid = p; /* owner key 'id:xxxxxx' */
} else if (strcmp(str, "builtin") == 0) {
use_builtin_keys = true;
}
return 1;
}
__setup("ca_keys=", ca_keys_setup);
#endif
/**
* x509_request_asymmetric_key - Request a key by X.509 certificate params.
* @keyring: The keys to search.
* @kid: The key ID.
* @partial: Use partial match if true, exact if false.
*
* Find a key in the given keyring by subject name and key ID. These might,
* for instance, be the issuer name and the authority key ID of an X.509
* certificate that needs to be verified.
*/
struct key *x509_request_asymmetric_key(struct key *keyring,
const struct asymmetric_key_id *kid,
bool partial)
{
key_ref_t key;
char *id, *p;
/* Construct an identifier "id:<keyid>". */
p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL);
if (!id)
return ERR_PTR(-ENOMEM);
if (partial) {
*p++ = 'i';
*p++ = 'd';
} else {
*p++ = 'e';
*p++ = 'x';
}
*p++ = ':';
p = bin2hex(p, kid->data, kid->len);
*p = 0;
pr_debug("Look up: \"%s\"\n", id);
key = keyring_search(make_key_ref(keyring, 1),
&key_type_asymmetric, id);
if (IS_ERR(key))
pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
kfree(id);
if (IS_ERR(key)) {
switch (PTR_ERR(key)) {
/* Hide some search errors */
case -EACCES:
case -ENOTDIR:
case -EAGAIN:
return ERR_PTR(-ENOKEY);
default:
return ERR_CAST(key);
}
}
pr_devel("<==%s() = 0 [%x]\n", __func__,
key_serial(key_ref_to_ptr(key)));
return key_ref_to_ptr(key);
}
EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
/*
* Set up the signature parameters in an X.509 certificate. This involves
* digesting the signed data and extracting the signature.
*/
int x509_get_sig_params(struct x509_certificate *cert)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
size_t digest_size, desc_size;
void *digest;
int ret;
pr_devel("==>%s()\n", __func__);
if (cert->unsupported_crypto)
return -ENOPKG;
if (cert->sig.rsa.s)
return 0;
cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
if (!cert->sig.rsa.s)
return -ENOMEM;
cert->sig.nr_mpi = 1;
/* Allocate the hashing algorithm we're going to need and find out how
* big the hash operational data will be.
*/
tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
cert->unsupported_crypto = true;
return -ENOPKG;
}
return PTR_ERR(tfm);
}
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
digest_size = crypto_shash_digestsize(tfm);
/* We allocate the hash operational data storage on the end of the
* digest storage space.
*/
ret = -ENOMEM;
digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
if (!digest)
goto error;
cert->sig.digest = digest;
cert->sig.digest_size = digest_size;
desc = digest + digest_size;
desc->tfm = tfm;
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error;
might_sleep();
ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
error:
crypto_free_shash(tfm);
pr_devel("<==%s() = %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL_GPL(x509_get_sig_params);
/*
* Check the signature on a certificate using the provided public key
*/
int x509_check_signature(const struct public_key *pub,
struct x509_certificate *cert)
{
int ret;
pr_devel("==>%s()\n", __func__);
ret = x509_get_sig_params(cert);
if (ret < 0)
return ret;
ret = public_key_verify_signature(pub, &cert->sig);
if (ret == -ENOPKG)
cert->unsupported_crypto = true;
pr_debug("Cert Verification: %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(x509_check_signature);
/*
* Check the new certificate against the ones in the trust keyring. If one of
* those is the signing key and validates the new certificate, then mark the
* new certificate as being trusted.
*
* Return 0 if the new certificate was successfully validated, 1 if we couldn't
* find a matching parent certificate in the trusted list and an error if there
* is a matching certificate but the signature check fails.
*/
static int x509_validate_trust(struct x509_certificate *cert,
struct key *trust_keyring)
{
struct key *key;
int ret = 1;
if (!trust_keyring)
return -EOPNOTSUPP;
if (ca_keyid && !asymmetric_key_id_partial(cert->authority, ca_keyid))
return -EPERM;
key = x509_request_asymmetric_key(trust_keyring, cert->authority,
false);
if (!IS_ERR(key)) {
if (!use_builtin_keys
|| test_bit(KEY_FLAG_BUILTIN, &key->flags))
ret = x509_check_signature(key->payload.data, cert);
key_put(key);
}
return ret;
}
/*
* Attempt to parse a data blob for a key as an X509 certificate.
*/
static int x509_key_preparse(struct key_preparsed_payload *prep)
{
struct asymmetric_key_ids *kids;
struct x509_certificate *cert;
const char *q;
size_t srlen, sulen;
char *desc = NULL, *p;
int ret;
cert = x509_cert_parse(prep->data, prep->datalen);
if (IS_ERR(cert))
return PTR_ERR(cert);
pr_devel("Cert Issuer: %s\n", cert->issuer);
pr_devel("Cert Subject: %s\n", cert->subject);
if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
!pkey_algo[cert->pub->pkey_algo] ||
!pkey_algo[cert->sig.pkey_algo] ||
!hash_algo_name[cert->sig.pkey_hash_algo]) {
ret = -ENOPKG;
goto error_free_cert;
}
pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
cert->valid_from.tm_mday, cert->valid_from.tm_hour,
cert->valid_from.tm_min, cert->valid_from.tm_sec);
pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
cert->valid_to.tm_mday, cert->valid_to.tm_hour,
cert->valid_to.tm_min, cert->valid_to.tm_sec);
pr_devel("Cert Signature: %s + %s\n",
pkey_algo_name[cert->sig.pkey_algo],
hash_algo_name[cert->sig.pkey_hash_algo]);
cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
cert->pub->id_type = PKEY_ID_X509;
/* Check the signature on the key if it appears to be self-signed */
if (!cert->authority ||
asymmetric_key_id_same(cert->skid, cert->authority)) {
ret = x509_check_signature(cert->pub, cert); /* self-signed */
if (ret < 0)
goto error_free_cert;
} else if (!prep->trusted) {
ret = x509_validate_trust(cert, get_system_trusted_keyring());
if (!ret)
prep->trusted = 1;
}
/* Propose a description */
sulen = strlen(cert->subject);
if (cert->raw_skid) {
srlen = cert->raw_skid_size;
q = cert->raw_skid;
} else {
srlen = cert->raw_serial_size;
q = cert->raw_serial;
}
if (srlen > 1 && *q == 0) {
srlen--;
q++;
}
ret = -ENOMEM;
desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
if (!desc)
goto error_free_cert;
p = memcpy(desc, cert->subject, sulen);
p += sulen;
*p++ = ':';
*p++ = ' ';
p = bin2hex(p, q, srlen);
*p = 0;
kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
if (!kids)
goto error_free_desc;
kids->id[0] = cert->id;
kids->id[1] = cert->skid;
/* We're pinning the module by being linked against it */
__module_get(public_key_subtype.owner);
prep->type_data[0] = &public_key_subtype;
prep->type_data[1] = kids;
prep->payload[0] = cert->pub;
prep->description = desc;
prep->quotalen = 100;
/* We've finished with the certificate */
cert->pub = NULL;
cert->id = NULL;
cert->skid = NULL;
desc = NULL;
ret = 0;
error_free_desc:
kfree(desc);
error_free_cert:
x509_free_certificate(cert);
return ret;
}
static struct asymmetric_key_parser x509_key_parser = {
.owner = THIS_MODULE,
.name = "x509",
.parse = x509_key_preparse,
};
/*
* Module stuff
*/
static int __init x509_key_init(void)
{
return register_asymmetric_key_parser(&x509_key_parser);
}
static void __exit x509_key_exit(void)
{
unregister_asymmetric_key_parser(&x509_key_parser);
}
module_init(x509_key_init);
module_exit(x509_key_exit);
MODULE_DESCRIPTION("X.509 certificate parser");
MODULE_LICENSE("GPL");