tmp_suning_uos_patched/tools/perf/builtin-sched.c
Julia Lawall f39cdf25bf perf tools: Move dereference after NULL test
In each case, if the NULL test on thread is needed, then the
dereference should be after the NULL test.

A simplified version of the semantic match that detects this
problem is as follows (http://coccinelle.lip6.fr/):

// <smpl>
@match exists@
expression x, E;
identifier fld;
@@

* x->fld
  ... when != \(x = E\|&x\)
* x == NULL
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
LKML-Reference: <Pine.LNX.4.64.0910170842500.9213@ask.diku.dk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-17 09:29:10 +02:00

1983 lines
44 KiB
C

#include "builtin.h"
#include "perf.h"
#include "util/util.h"
#include "util/cache.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/header.h"
#include "util/parse-options.h"
#include "util/trace-event.h"
#include "util/debug.h"
#include "util/data_map.h"
#include <sys/types.h>
#include <sys/prctl.h>
#include <semaphore.h>
#include <pthread.h>
#include <math.h>
static char const *input_name = "perf.data";
static unsigned long total_comm = 0;
static struct perf_header *header;
static u64 sample_type;
static char default_sort_order[] = "avg, max, switch, runtime";
static char *sort_order = default_sort_order;
static int profile_cpu = -1;
static char *cwd;
static int cwdlen;
#define PR_SET_NAME 15 /* Set process name */
#define MAX_CPUS 4096
#define BUG_ON(x) assert(!(x))
static u64 run_measurement_overhead;
static u64 sleep_measurement_overhead;
#define COMM_LEN 20
#define SYM_LEN 129
#define MAX_PID 65536
static unsigned long nr_tasks;
struct sched_atom;
struct task_desc {
unsigned long nr;
unsigned long pid;
char comm[COMM_LEN];
unsigned long nr_events;
unsigned long curr_event;
struct sched_atom **atoms;
pthread_t thread;
sem_t sleep_sem;
sem_t ready_for_work;
sem_t work_done_sem;
u64 cpu_usage;
};
enum sched_event_type {
SCHED_EVENT_RUN,
SCHED_EVENT_SLEEP,
SCHED_EVENT_WAKEUP,
SCHED_EVENT_MIGRATION,
};
struct sched_atom {
enum sched_event_type type;
u64 timestamp;
u64 duration;
unsigned long nr;
int specific_wait;
sem_t *wait_sem;
struct task_desc *wakee;
};
static struct task_desc *pid_to_task[MAX_PID];
static struct task_desc **tasks;
static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
static u64 start_time;
static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
static unsigned long nr_run_events;
static unsigned long nr_sleep_events;
static unsigned long nr_wakeup_events;
static unsigned long nr_sleep_corrections;
static unsigned long nr_run_events_optimized;
static unsigned long targetless_wakeups;
static unsigned long multitarget_wakeups;
static u64 cpu_usage;
static u64 runavg_cpu_usage;
static u64 parent_cpu_usage;
static u64 runavg_parent_cpu_usage;
static unsigned long nr_runs;
static u64 sum_runtime;
static u64 sum_fluct;
static u64 run_avg;
static unsigned long replay_repeat = 10;
static unsigned long nr_timestamps;
static unsigned long nr_unordered_timestamps;
static unsigned long nr_state_machine_bugs;
static unsigned long nr_context_switch_bugs;
static unsigned long nr_events;
static unsigned long nr_lost_chunks;
static unsigned long nr_lost_events;
#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
enum thread_state {
THREAD_SLEEPING = 0,
THREAD_WAIT_CPU,
THREAD_SCHED_IN,
THREAD_IGNORE
};
struct work_atom {
struct list_head list;
enum thread_state state;
u64 sched_out_time;
u64 wake_up_time;
u64 sched_in_time;
u64 runtime;
};
struct work_atoms {
struct list_head work_list;
struct thread *thread;
struct rb_node node;
u64 max_lat;
u64 total_lat;
u64 nb_atoms;
u64 total_runtime;
};
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
static struct rb_root atom_root, sorted_atom_root;
static u64 all_runtime;
static u64 all_count;
static u64 get_nsecs(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
}
static void burn_nsecs(u64 nsecs)
{
u64 T0 = get_nsecs(), T1;
do {
T1 = get_nsecs();
} while (T1 + run_measurement_overhead < T0 + nsecs);
}
static void sleep_nsecs(u64 nsecs)
{
struct timespec ts;
ts.tv_nsec = nsecs % 999999999;
ts.tv_sec = nsecs / 999999999;
nanosleep(&ts, NULL);
}
static void calibrate_run_measurement_overhead(void)
{
u64 T0, T1, delta, min_delta = 1000000000ULL;
int i;
for (i = 0; i < 10; i++) {
T0 = get_nsecs();
burn_nsecs(0);
T1 = get_nsecs();
delta = T1-T0;
min_delta = min(min_delta, delta);
}
run_measurement_overhead = min_delta;
printf("run measurement overhead: %Ld nsecs\n", min_delta);
}
static void calibrate_sleep_measurement_overhead(void)
{
u64 T0, T1, delta, min_delta = 1000000000ULL;
int i;
for (i = 0; i < 10; i++) {
T0 = get_nsecs();
sleep_nsecs(10000);
T1 = get_nsecs();
delta = T1-T0;
min_delta = min(min_delta, delta);
}
min_delta -= 10000;
sleep_measurement_overhead = min_delta;
printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
}
static struct sched_atom *
get_new_event(struct task_desc *task, u64 timestamp)
{
struct sched_atom *event = calloc(1, sizeof(*event));
unsigned long idx = task->nr_events;
size_t size;
event->timestamp = timestamp;
event->nr = idx;
task->nr_events++;
size = sizeof(struct sched_atom *) * task->nr_events;
task->atoms = realloc(task->atoms, size);
BUG_ON(!task->atoms);
task->atoms[idx] = event;
return event;
}
static struct sched_atom *last_event(struct task_desc *task)
{
if (!task->nr_events)
return NULL;
return task->atoms[task->nr_events - 1];
}
static void
add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
{
struct sched_atom *event, *curr_event = last_event(task);
/*
* optimize an existing RUN event by merging this one
* to it:
*/
if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
nr_run_events_optimized++;
curr_event->duration += duration;
return;
}
event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_RUN;
event->duration = duration;
nr_run_events++;
}
static void
add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
struct task_desc *wakee)
{
struct sched_atom *event, *wakee_event;
event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_WAKEUP;
event->wakee = wakee;
wakee_event = last_event(wakee);
if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
targetless_wakeups++;
return;
}
if (wakee_event->wait_sem) {
multitarget_wakeups++;
return;
}
wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
sem_init(wakee_event->wait_sem, 0, 0);
wakee_event->specific_wait = 1;
event->wait_sem = wakee_event->wait_sem;
nr_wakeup_events++;
}
static void
add_sched_event_sleep(struct task_desc *task, u64 timestamp,
u64 task_state __used)
{
struct sched_atom *event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_SLEEP;
nr_sleep_events++;
}
static struct task_desc *register_pid(unsigned long pid, const char *comm)
{
struct task_desc *task;
BUG_ON(pid >= MAX_PID);
task = pid_to_task[pid];
if (task)
return task;
task = calloc(1, sizeof(*task));
task->pid = pid;
task->nr = nr_tasks;
strcpy(task->comm, comm);
/*
* every task starts in sleeping state - this gets ignored
* if there's no wakeup pointing to this sleep state:
*/
add_sched_event_sleep(task, 0, 0);
pid_to_task[pid] = task;
nr_tasks++;
tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
BUG_ON(!tasks);
tasks[task->nr] = task;
if (verbose)
printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
return task;
}
static void print_task_traces(void)
{
struct task_desc *task;
unsigned long i;
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
task->nr, task->comm, task->pid, task->nr_events);
}
}
static void add_cross_task_wakeups(void)
{
struct task_desc *task1, *task2;
unsigned long i, j;
for (i = 0; i < nr_tasks; i++) {
task1 = tasks[i];
j = i + 1;
if (j == nr_tasks)
j = 0;
task2 = tasks[j];
add_sched_event_wakeup(task1, 0, task2);
}
}
static void
process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
{
int ret = 0;
u64 now;
long long delta;
now = get_nsecs();
delta = start_time + atom->timestamp - now;
switch (atom->type) {
case SCHED_EVENT_RUN:
burn_nsecs(atom->duration);
break;
case SCHED_EVENT_SLEEP:
if (atom->wait_sem)
ret = sem_wait(atom->wait_sem);
BUG_ON(ret);
break;
case SCHED_EVENT_WAKEUP:
if (atom->wait_sem)
ret = sem_post(atom->wait_sem);
BUG_ON(ret);
break;
case SCHED_EVENT_MIGRATION:
break;
default:
BUG_ON(1);
}
}
static u64 get_cpu_usage_nsec_parent(void)
{
struct rusage ru;
u64 sum;
int err;
err = getrusage(RUSAGE_SELF, &ru);
BUG_ON(err);
sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
return sum;
}
static u64 get_cpu_usage_nsec_self(void)
{
char filename [] = "/proc/1234567890/sched";
unsigned long msecs, nsecs;
char *line = NULL;
u64 total = 0;
size_t len = 0;
ssize_t chars;
FILE *file;
int ret;
sprintf(filename, "/proc/%d/sched", getpid());
file = fopen(filename, "r");
BUG_ON(!file);
while ((chars = getline(&line, &len, file)) != -1) {
ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
&msecs, &nsecs);
if (ret == 2) {
total = msecs*1e6 + nsecs;
break;
}
}
if (line)
free(line);
fclose(file);
return total;
}
static void *thread_func(void *ctx)
{
struct task_desc *this_task = ctx;
u64 cpu_usage_0, cpu_usage_1;
unsigned long i, ret;
char comm2[22];
sprintf(comm2, ":%s", this_task->comm);
prctl(PR_SET_NAME, comm2);
again:
ret = sem_post(&this_task->ready_for_work);
BUG_ON(ret);
ret = pthread_mutex_lock(&start_work_mutex);
BUG_ON(ret);
ret = pthread_mutex_unlock(&start_work_mutex);
BUG_ON(ret);
cpu_usage_0 = get_cpu_usage_nsec_self();
for (i = 0; i < this_task->nr_events; i++) {
this_task->curr_event = i;
process_sched_event(this_task, this_task->atoms[i]);
}
cpu_usage_1 = get_cpu_usage_nsec_self();
this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
ret = sem_post(&this_task->work_done_sem);
BUG_ON(ret);
ret = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(ret);
ret = pthread_mutex_unlock(&work_done_wait_mutex);
BUG_ON(ret);
goto again;
}
static void create_tasks(void)
{
struct task_desc *task;
pthread_attr_t attr;
unsigned long i;
int err;
err = pthread_attr_init(&attr);
BUG_ON(err);
err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
BUG_ON(err);
err = pthread_mutex_lock(&start_work_mutex);
BUG_ON(err);
err = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(err);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
sem_init(&task->sleep_sem, 0, 0);
sem_init(&task->ready_for_work, 0, 0);
sem_init(&task->work_done_sem, 0, 0);
task->curr_event = 0;
err = pthread_create(&task->thread, &attr, thread_func, task);
BUG_ON(err);
}
}
static void wait_for_tasks(void)
{
u64 cpu_usage_0, cpu_usage_1;
struct task_desc *task;
unsigned long i, ret;
start_time = get_nsecs();
cpu_usage = 0;
pthread_mutex_unlock(&work_done_wait_mutex);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
ret = sem_wait(&task->ready_for_work);
BUG_ON(ret);
sem_init(&task->ready_for_work, 0, 0);
}
ret = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(ret);
cpu_usage_0 = get_cpu_usage_nsec_parent();
pthread_mutex_unlock(&start_work_mutex);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
ret = sem_wait(&task->work_done_sem);
BUG_ON(ret);
sem_init(&task->work_done_sem, 0, 0);
cpu_usage += task->cpu_usage;
task->cpu_usage = 0;
}
cpu_usage_1 = get_cpu_usage_nsec_parent();
if (!runavg_cpu_usage)
runavg_cpu_usage = cpu_usage;
runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
if (!runavg_parent_cpu_usage)
runavg_parent_cpu_usage = parent_cpu_usage;
runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
parent_cpu_usage)/10;
ret = pthread_mutex_lock(&start_work_mutex);
BUG_ON(ret);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
sem_init(&task->sleep_sem, 0, 0);
task->curr_event = 0;
}
}
static void run_one_test(void)
{
u64 T0, T1, delta, avg_delta, fluct, std_dev;
T0 = get_nsecs();
wait_for_tasks();
T1 = get_nsecs();
delta = T1 - T0;
sum_runtime += delta;
nr_runs++;
avg_delta = sum_runtime / nr_runs;
if (delta < avg_delta)
fluct = avg_delta - delta;
else
fluct = delta - avg_delta;
sum_fluct += fluct;
std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
if (!run_avg)
run_avg = delta;
run_avg = (run_avg*9 + delta)/10;
printf("#%-3ld: %0.3f, ",
nr_runs, (double)delta/1000000.0);
printf("ravg: %0.2f, ",
(double)run_avg/1e6);
printf("cpu: %0.2f / %0.2f",
(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
#if 0
/*
* rusage statistics done by the parent, these are less
* accurate than the sum_exec_runtime based statistics:
*/
printf(" [%0.2f / %0.2f]",
(double)parent_cpu_usage/1e6,
(double)runavg_parent_cpu_usage/1e6);
#endif
printf("\n");
if (nr_sleep_corrections)
printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
nr_sleep_corrections = 0;
}
static void test_calibrations(void)
{
u64 T0, T1;
T0 = get_nsecs();
burn_nsecs(1e6);
T1 = get_nsecs();
printf("the run test took %Ld nsecs\n", T1-T0);
T0 = get_nsecs();
sleep_nsecs(1e6);
T1 = get_nsecs();
printf("the sleep test took %Ld nsecs\n", T1-T0);
}
static int
process_comm_event(event_t *event, unsigned long offset, unsigned long head)
{
struct thread *thread = threads__findnew(event->comm.tid);
dump_printf("%p [%p]: perf_event_comm: %s:%d\n",
(void *)(offset + head),
(void *)(long)(event->header.size),
event->comm.comm, event->comm.pid);
if (thread == NULL ||
thread__set_comm(thread, event->comm.comm)) {
dump_printf("problem processing perf_event_comm, skipping event.\n");
return -1;
}
total_comm++;
return 0;
}
struct raw_event_sample {
u32 size;
char data[0];
};
#define FILL_FIELD(ptr, field, event, data) \
ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
#define FILL_ARRAY(ptr, array, event, data) \
do { \
void *__array = raw_field_ptr(event, #array, data); \
memcpy(ptr.array, __array, sizeof(ptr.array)); \
} while(0)
#define FILL_COMMON_FIELDS(ptr, event, data) \
do { \
FILL_FIELD(ptr, common_type, event, data); \
FILL_FIELD(ptr, common_flags, event, data); \
FILL_FIELD(ptr, common_preempt_count, event, data); \
FILL_FIELD(ptr, common_pid, event, data); \
FILL_FIELD(ptr, common_tgid, event, data); \
} while (0)
struct trace_switch_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char prev_comm[16];
u32 prev_pid;
u32 prev_prio;
u64 prev_state;
char next_comm[16];
u32 next_pid;
u32 next_prio;
};
struct trace_runtime_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char comm[16];
u32 pid;
u64 runtime;
u64 vruntime;
};
struct trace_wakeup_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char comm[16];
u32 pid;
u32 prio;
u32 success;
u32 cpu;
};
struct trace_fork_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char parent_comm[16];
u32 parent_pid;
char child_comm[16];
u32 child_pid;
};
struct trace_migrate_task_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char comm[16];
u32 pid;
u32 prio;
u32 cpu;
};
struct trace_sched_handler {
void (*switch_event)(struct trace_switch_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*runtime_event)(struct trace_runtime_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*wakeup_event)(struct trace_wakeup_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*fork_event)(struct trace_fork_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*migrate_task_event)(struct trace_migrate_task_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
};
static void
replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct task_desc *waker, *wakee;
if (verbose) {
printf("sched_wakeup event %p\n", event);
printf(" ... pid %d woke up %s/%d\n",
wakeup_event->common_pid,
wakeup_event->comm,
wakeup_event->pid);
}
waker = register_pid(wakeup_event->common_pid, "<unknown>");
wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
add_sched_event_wakeup(waker, timestamp, wakee);
}
static u64 cpu_last_switched[MAX_CPUS];
static void
replay_switch_event(struct trace_switch_event *switch_event,
struct event *event,
int cpu,
u64 timestamp,
struct thread *thread __used)
{
struct task_desc *prev, *next;
u64 timestamp0;
s64 delta;
if (verbose)
printf("sched_switch event %p\n", event);
if (cpu >= MAX_CPUS || cpu < 0)
return;
timestamp0 = cpu_last_switched[cpu];
if (timestamp0)
delta = timestamp - timestamp0;
else
delta = 0;
if (delta < 0)
die("hm, delta: %Ld < 0 ?\n", delta);
if (verbose) {
printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
switch_event->prev_comm, switch_event->prev_pid,
switch_event->next_comm, switch_event->next_pid,
delta);
}
prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
next = register_pid(switch_event->next_pid, switch_event->next_comm);
cpu_last_switched[cpu] = timestamp;
add_sched_event_run(prev, timestamp, delta);
add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
}
static void
replay_fork_event(struct trace_fork_event *fork_event,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
if (verbose) {
printf("sched_fork event %p\n", event);
printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
}
register_pid(fork_event->parent_pid, fork_event->parent_comm);
register_pid(fork_event->child_pid, fork_event->child_comm);
}
static struct trace_sched_handler replay_ops = {
.wakeup_event = replay_wakeup_event,
.switch_event = replay_switch_event,
.fork_event = replay_fork_event,
};
struct sort_dimension {
const char *name;
sort_fn_t cmp;
struct list_head list;
};
static LIST_HEAD(cmp_pid);
static int
thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
{
struct sort_dimension *sort;
int ret = 0;
BUG_ON(list_empty(list));
list_for_each_entry(sort, list, list) {
ret = sort->cmp(l, r);
if (ret)
return ret;
}
return ret;
}
static struct work_atoms *
thread_atoms_search(struct rb_root *root, struct thread *thread,
struct list_head *sort_list)
{
struct rb_node *node = root->rb_node;
struct work_atoms key = { .thread = thread };
while (node) {
struct work_atoms *atoms;
int cmp;
atoms = container_of(node, struct work_atoms, node);
cmp = thread_lat_cmp(sort_list, &key, atoms);
if (cmp > 0)
node = node->rb_left;
else if (cmp < 0)
node = node->rb_right;
else {
BUG_ON(thread != atoms->thread);
return atoms;
}
}
return NULL;
}
static void
__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
struct list_head *sort_list)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
while (*new) {
struct work_atoms *this;
int cmp;
this = container_of(*new, struct work_atoms, node);
parent = *new;
cmp = thread_lat_cmp(sort_list, data, this);
if (cmp > 0)
new = &((*new)->rb_left);
else
new = &((*new)->rb_right);
}
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);
}
static void thread_atoms_insert(struct thread *thread)
{
struct work_atoms *atoms;
atoms = calloc(sizeof(*atoms), 1);
if (!atoms)
die("No memory");
atoms->thread = thread;
INIT_LIST_HEAD(&atoms->work_list);
__thread_latency_insert(&atom_root, atoms, &cmp_pid);
}
static void
latency_fork_event(struct trace_fork_event *fork_event __used,
struct event *event __used,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
/* should insert the newcomer */
}
__used
static char sched_out_state(struct trace_switch_event *switch_event)
{
const char *str = TASK_STATE_TO_CHAR_STR;
return str[switch_event->prev_state];
}
static void
add_sched_out_event(struct work_atoms *atoms,
char run_state,
u64 timestamp)
{
struct work_atom *atom;
atom = calloc(sizeof(*atom), 1);
if (!atom)
die("Non memory");
atom->sched_out_time = timestamp;
if (run_state == 'R') {
atom->state = THREAD_WAIT_CPU;
atom->wake_up_time = atom->sched_out_time;
}
list_add_tail(&atom->list, &atoms->work_list);
}
static void
add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
{
struct work_atom *atom;
BUG_ON(list_empty(&atoms->work_list));
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
atom->runtime += delta;
atoms->total_runtime += delta;
}
static void
add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
{
struct work_atom *atom;
u64 delta;
if (list_empty(&atoms->work_list))
return;
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
if (atom->state != THREAD_WAIT_CPU)
return;
if (timestamp < atom->wake_up_time) {
atom->state = THREAD_IGNORE;
return;
}
atom->state = THREAD_SCHED_IN;
atom->sched_in_time = timestamp;
delta = atom->sched_in_time - atom->wake_up_time;
atoms->total_lat += delta;
if (delta > atoms->max_lat)
atoms->max_lat = delta;
atoms->nb_atoms++;
}
static void
latency_switch_event(struct trace_switch_event *switch_event,
struct event *event __used,
int cpu,
u64 timestamp,
struct thread *thread __used)
{
struct work_atoms *out_events, *in_events;
struct thread *sched_out, *sched_in;
u64 timestamp0;
s64 delta;
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
timestamp0 = cpu_last_switched[cpu];
cpu_last_switched[cpu] = timestamp;
if (timestamp0)
delta = timestamp - timestamp0;
else
delta = 0;
if (delta < 0)
die("hm, delta: %Ld < 0 ?\n", delta);
sched_out = threads__findnew(switch_event->prev_pid);
sched_in = threads__findnew(switch_event->next_pid);
out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
if (!out_events) {
thread_atoms_insert(sched_out);
out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
if (!out_events)
die("out-event: Internal tree error");
}
add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
if (!in_events) {
thread_atoms_insert(sched_in);
in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
if (!in_events)
die("in-event: Internal tree error");
/*
* Take came in we have not heard about yet,
* add in an initial atom in runnable state:
*/
add_sched_out_event(in_events, 'R', timestamp);
}
add_sched_in_event(in_events, timestamp);
}
static void
latency_runtime_event(struct trace_runtime_event *runtime_event,
struct event *event __used,
int cpu,
u64 timestamp,
struct thread *this_thread __used)
{
struct thread *thread = threads__findnew(runtime_event->pid);
struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
BUG_ON(cpu >= MAX_CPUS || cpu < 0);
if (!atoms) {
thread_atoms_insert(thread);
atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
if (!atoms)
die("in-event: Internal tree error");
add_sched_out_event(atoms, 'R', timestamp);
}
add_runtime_event(atoms, runtime_event->runtime, timestamp);
}
static void
latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
struct event *__event __used,
int cpu __used,
u64 timestamp,
struct thread *thread __used)
{
struct work_atoms *atoms;
struct work_atom *atom;
struct thread *wakee;
/* Note for later, it may be interesting to observe the failing cases */
if (!wakeup_event->success)
return;
wakee = threads__findnew(wakeup_event->pid);
atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
if (!atoms) {
thread_atoms_insert(wakee);
atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
if (!atoms)
die("wakeup-event: Internal tree error");
add_sched_out_event(atoms, 'S', timestamp);
}
BUG_ON(list_empty(&atoms->work_list));
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
/*
* You WILL be missing events if you've recorded only
* one CPU, or are only looking at only one, so don't
* make useless noise.
*/
if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
nr_state_machine_bugs++;
nr_timestamps++;
if (atom->sched_out_time > timestamp) {
nr_unordered_timestamps++;
return;
}
atom->state = THREAD_WAIT_CPU;
atom->wake_up_time = timestamp;
}
static void
latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
struct event *__event __used,
int cpu __used,
u64 timestamp,
struct thread *thread __used)
{
struct work_atoms *atoms;
struct work_atom *atom;
struct thread *migrant;
/*
* Only need to worry about migration when profiling one CPU.
*/
if (profile_cpu == -1)
return;
migrant = threads__findnew(migrate_task_event->pid);
atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
if (!atoms) {
thread_atoms_insert(migrant);
register_pid(migrant->pid, migrant->comm);
atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
if (!atoms)
die("migration-event: Internal tree error");
add_sched_out_event(atoms, 'R', timestamp);
}
BUG_ON(list_empty(&atoms->work_list));
atom = list_entry(atoms->work_list.prev, struct work_atom, list);
atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
nr_timestamps++;
if (atom->sched_out_time > timestamp)
nr_unordered_timestamps++;
}
static struct trace_sched_handler lat_ops = {
.wakeup_event = latency_wakeup_event,
.switch_event = latency_switch_event,
.runtime_event = latency_runtime_event,
.fork_event = latency_fork_event,
.migrate_task_event = latency_migrate_task_event,
};
static void output_lat_thread(struct work_atoms *work_list)
{
int i;
int ret;
u64 avg;
if (!work_list->nb_atoms)
return;
/*
* Ignore idle threads:
*/
if (!strcmp(work_list->thread->comm, "swapper"))
return;
all_runtime += work_list->total_runtime;
all_count += work_list->nb_atoms;
ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
for (i = 0; i < 24 - ret; i++)
printf(" ");
avg = work_list->total_lat / work_list->nb_atoms;
printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms |\n",
(double)work_list->total_runtime / 1e6,
work_list->nb_atoms, (double)avg / 1e6,
(double)work_list->max_lat / 1e6);
}
static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
{
if (l->thread->pid < r->thread->pid)
return -1;
if (l->thread->pid > r->thread->pid)
return 1;
return 0;
}
static struct sort_dimension pid_sort_dimension = {
.name = "pid",
.cmp = pid_cmp,
};
static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
{
u64 avgl, avgr;
if (!l->nb_atoms)
return -1;
if (!r->nb_atoms)
return 1;
avgl = l->total_lat / l->nb_atoms;
avgr = r->total_lat / r->nb_atoms;
if (avgl < avgr)
return -1;
if (avgl > avgr)
return 1;
return 0;
}
static struct sort_dimension avg_sort_dimension = {
.name = "avg",
.cmp = avg_cmp,
};
static int max_cmp(struct work_atoms *l, struct work_atoms *r)
{
if (l->max_lat < r->max_lat)
return -1;
if (l->max_lat > r->max_lat)
return 1;
return 0;
}
static struct sort_dimension max_sort_dimension = {
.name = "max",
.cmp = max_cmp,
};
static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
{
if (l->nb_atoms < r->nb_atoms)
return -1;
if (l->nb_atoms > r->nb_atoms)
return 1;
return 0;
}
static struct sort_dimension switch_sort_dimension = {
.name = "switch",
.cmp = switch_cmp,
};
static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
{
if (l->total_runtime < r->total_runtime)
return -1;
if (l->total_runtime > r->total_runtime)
return 1;
return 0;
}
static struct sort_dimension runtime_sort_dimension = {
.name = "runtime",
.cmp = runtime_cmp,
};
static struct sort_dimension *available_sorts[] = {
&pid_sort_dimension,
&avg_sort_dimension,
&max_sort_dimension,
&switch_sort_dimension,
&runtime_sort_dimension,
};
#define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
static LIST_HEAD(sort_list);
static int sort_dimension__add(const char *tok, struct list_head *list)
{
int i;
for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
if (!strcmp(available_sorts[i]->name, tok)) {
list_add_tail(&available_sorts[i]->list, list);
return 0;
}
}
return -1;
}
static void setup_sorting(void);
static void sort_lat(void)
{
struct rb_node *node;
for (;;) {
struct work_atoms *data;
node = rb_first(&atom_root);
if (!node)
break;
rb_erase(node, &atom_root);
data = rb_entry(node, struct work_atoms, node);
__thread_latency_insert(&sorted_atom_root, data, &sort_list);
}
}
static struct trace_sched_handler *trace_handler;
static void
process_sched_wakeup_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_wakeup_event wakeup_event;
FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
FILL_ARRAY(wakeup_event, comm, event, raw->data);
FILL_FIELD(wakeup_event, pid, event, raw->data);
FILL_FIELD(wakeup_event, prio, event, raw->data);
FILL_FIELD(wakeup_event, success, event, raw->data);
FILL_FIELD(wakeup_event, cpu, event, raw->data);
if (trace_handler->wakeup_event)
trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
}
/*
* Track the current task - that way we can know whether there's any
* weird events, such as a task being switched away that is not current.
*/
static int max_cpu;
static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
static struct thread *curr_thread[MAX_CPUS];
static char next_shortname1 = 'A';
static char next_shortname2 = '0';
static void
map_switch_event(struct trace_switch_event *switch_event,
struct event *event __used,
int this_cpu,
u64 timestamp,
struct thread *thread __used)
{
struct thread *sched_out, *sched_in;
int new_shortname;
u64 timestamp0;
s64 delta;
int cpu;
BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
if (this_cpu > max_cpu)
max_cpu = this_cpu;
timestamp0 = cpu_last_switched[this_cpu];
cpu_last_switched[this_cpu] = timestamp;
if (timestamp0)
delta = timestamp - timestamp0;
else
delta = 0;
if (delta < 0)
die("hm, delta: %Ld < 0 ?\n", delta);
sched_out = threads__findnew(switch_event->prev_pid);
sched_in = threads__findnew(switch_event->next_pid);
curr_thread[this_cpu] = sched_in;
printf(" ");
new_shortname = 0;
if (!sched_in->shortname[0]) {
sched_in->shortname[0] = next_shortname1;
sched_in->shortname[1] = next_shortname2;
if (next_shortname1 < 'Z') {
next_shortname1++;
} else {
next_shortname1='A';
if (next_shortname2 < '9') {
next_shortname2++;
} else {
next_shortname2='0';
}
}
new_shortname = 1;
}
for (cpu = 0; cpu <= max_cpu; cpu++) {
if (cpu != this_cpu)
printf(" ");
else
printf("*");
if (curr_thread[cpu]) {
if (curr_thread[cpu]->pid)
printf("%2s ", curr_thread[cpu]->shortname);
else
printf(". ");
} else
printf(" ");
}
printf(" %12.6f secs ", (double)timestamp/1e9);
if (new_shortname) {
printf("%s => %s:%d\n",
sched_in->shortname, sched_in->comm, sched_in->pid);
} else {
printf("\n");
}
}
static void
process_sched_switch_event(struct raw_event_sample *raw,
struct event *event,
int this_cpu,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_switch_event switch_event;
FILL_COMMON_FIELDS(switch_event, event, raw->data);
FILL_ARRAY(switch_event, prev_comm, event, raw->data);
FILL_FIELD(switch_event, prev_pid, event, raw->data);
FILL_FIELD(switch_event, prev_prio, event, raw->data);
FILL_FIELD(switch_event, prev_state, event, raw->data);
FILL_ARRAY(switch_event, next_comm, event, raw->data);
FILL_FIELD(switch_event, next_pid, event, raw->data);
FILL_FIELD(switch_event, next_prio, event, raw->data);
if (curr_pid[this_cpu] != (u32)-1) {
/*
* Are we trying to switch away a PID that is
* not current?
*/
if (curr_pid[this_cpu] != switch_event.prev_pid)
nr_context_switch_bugs++;
}
if (trace_handler->switch_event)
trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
curr_pid[this_cpu] = switch_event.next_pid;
}
static void
process_sched_runtime_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_runtime_event runtime_event;
FILL_ARRAY(runtime_event, comm, event, raw->data);
FILL_FIELD(runtime_event, pid, event, raw->data);
FILL_FIELD(runtime_event, runtime, event, raw->data);
FILL_FIELD(runtime_event, vruntime, event, raw->data);
if (trace_handler->runtime_event)
trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
}
static void
process_sched_fork_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_fork_event fork_event;
FILL_COMMON_FIELDS(fork_event, event, raw->data);
FILL_ARRAY(fork_event, parent_comm, event, raw->data);
FILL_FIELD(fork_event, parent_pid, event, raw->data);
FILL_ARRAY(fork_event, child_comm, event, raw->data);
FILL_FIELD(fork_event, child_pid, event, raw->data);
if (trace_handler->fork_event)
trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
}
static void
process_sched_exit_event(struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
if (verbose)
printf("sched_exit event %p\n", event);
}
static void
process_sched_migrate_task_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_migrate_task_event migrate_task_event;
FILL_COMMON_FIELDS(migrate_task_event, event, raw->data);
FILL_ARRAY(migrate_task_event, comm, event, raw->data);
FILL_FIELD(migrate_task_event, pid, event, raw->data);
FILL_FIELD(migrate_task_event, prio, event, raw->data);
FILL_FIELD(migrate_task_event, cpu, event, raw->data);
if (trace_handler->migrate_task_event)
trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
}
static void
process_raw_event(event_t *raw_event __used, void *more_data,
int cpu, u64 timestamp, struct thread *thread)
{
struct raw_event_sample *raw = more_data;
struct event *event;
int type;
type = trace_parse_common_type(raw->data);
event = trace_find_event(type);
if (!strcmp(event->name, "sched_switch"))
process_sched_switch_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_stat_runtime"))
process_sched_runtime_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_wakeup"))
process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_wakeup_new"))
process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_process_fork"))
process_sched_fork_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_process_exit"))
process_sched_exit_event(event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_migrate_task"))
process_sched_migrate_task_event(raw, event, cpu, timestamp, thread);
}
static int
process_sample_event(event_t *event, unsigned long offset, unsigned long head)
{
struct thread *thread;
u64 ip = event->ip.ip;
u64 timestamp = -1;
u32 cpu = -1;
u64 period = 1;
void *more_data = event->ip.__more_data;
if (!(sample_type & PERF_SAMPLE_RAW))
return 0;
thread = threads__findnew(event->ip.pid);
if (sample_type & PERF_SAMPLE_TIME) {
timestamp = *(u64 *)more_data;
more_data += sizeof(u64);
}
if (sample_type & PERF_SAMPLE_CPU) {
cpu = *(u32 *)more_data;
more_data += sizeof(u32);
more_data += sizeof(u32); /* reserved */
}
if (sample_type & PERF_SAMPLE_PERIOD) {
period = *(u64 *)more_data;
more_data += sizeof(u64);
}
dump_printf("%p [%p]: PERF_RECORD_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
(void *)(offset + head),
(void *)(long)(event->header.size),
event->header.misc,
event->ip.pid, event->ip.tid,
(void *)(long)ip,
(long long)period);
if (thread == NULL) {
eprintf("problem processing %d event, skipping it.\n",
event->header.type);
return -1;
}
dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
if (profile_cpu != -1 && profile_cpu != (int) cpu)
return 0;
process_raw_event(event, more_data, cpu, timestamp, thread);
return 0;
}
static int
process_lost_event(event_t *event __used,
unsigned long offset __used,
unsigned long head __used)
{
nr_lost_chunks++;
nr_lost_events += event->lost.lost;
return 0;
}
static int sample_type_check(u64 type)
{
sample_type = type;
if (!(sample_type & PERF_SAMPLE_RAW)) {
fprintf(stderr,
"No trace sample to read. Did you call perf record "
"without -R?");
return -1;
}
return 0;
}
static struct perf_file_handler file_handler = {
.process_sample_event = process_sample_event,
.process_comm_event = process_comm_event,
.process_lost_event = process_lost_event,
.sample_type_check = sample_type_check,
};
static int read_events(void)
{
register_idle_thread();
register_perf_file_handler(&file_handler);
return mmap_dispatch_perf_file(&header, input_name, 0, 0, &cwdlen, &cwd);
}
static void print_bad_events(void)
{
if (nr_unordered_timestamps && nr_timestamps) {
printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
(double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
nr_unordered_timestamps, nr_timestamps);
}
if (nr_lost_events && nr_events) {
printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
(double)nr_lost_events/(double)nr_events*100.0,
nr_lost_events, nr_events, nr_lost_chunks);
}
if (nr_state_machine_bugs && nr_timestamps) {
printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
(double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
nr_state_machine_bugs, nr_timestamps);
if (nr_lost_events)
printf(" (due to lost events?)");
printf("\n");
}
if (nr_context_switch_bugs && nr_timestamps) {
printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
(double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
nr_context_switch_bugs, nr_timestamps);
if (nr_lost_events)
printf(" (due to lost events?)");
printf("\n");
}
}
static void __cmd_lat(void)
{
struct rb_node *next;
setup_pager();
read_events();
sort_lat();
printf("\n -----------------------------------------------------------------------------------------\n");
printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms |\n");
printf(" -----------------------------------------------------------------------------------------\n");
next = rb_first(&sorted_atom_root);
while (next) {
struct work_atoms *work_list;
work_list = rb_entry(next, struct work_atoms, node);
output_lat_thread(work_list);
next = rb_next(next);
}
printf(" -----------------------------------------------------------------------------------------\n");
printf(" TOTAL: |%11.3f ms |%9Ld |\n",
(double)all_runtime/1e6, all_count);
printf(" ---------------------------------------------------\n");
print_bad_events();
printf("\n");
}
static struct trace_sched_handler map_ops = {
.wakeup_event = NULL,
.switch_event = map_switch_event,
.runtime_event = NULL,
.fork_event = NULL,
};
static void __cmd_map(void)
{
max_cpu = sysconf(_SC_NPROCESSORS_CONF);
setup_pager();
read_events();
print_bad_events();
}
static void __cmd_replay(void)
{
unsigned long i;
calibrate_run_measurement_overhead();
calibrate_sleep_measurement_overhead();
test_calibrations();
read_events();
printf("nr_run_events: %ld\n", nr_run_events);
printf("nr_sleep_events: %ld\n", nr_sleep_events);
printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
if (targetless_wakeups)
printf("target-less wakeups: %ld\n", targetless_wakeups);
if (multitarget_wakeups)
printf("multi-target wakeups: %ld\n", multitarget_wakeups);
if (nr_run_events_optimized)
printf("run atoms optimized: %ld\n",
nr_run_events_optimized);
print_task_traces();
add_cross_task_wakeups();
create_tasks();
printf("------------------------------------------------------------\n");
for (i = 0; i < replay_repeat; i++)
run_one_test();
}
static const char * const sched_usage[] = {
"perf sched [<options>] {record|latency|map|replay|trace}",
NULL
};
static const struct option sched_options[] = {
OPT_STRING('i', "input", &input_name, "file",
"input file name"),
OPT_BOOLEAN('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_END()
};
static const char * const latency_usage[] = {
"perf sched latency [<options>]",
NULL
};
static const struct option latency_options[] = {
OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
"sort by key(s): runtime, switch, avg, max"),
OPT_BOOLEAN('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_INTEGER('C', "CPU", &profile_cpu,
"CPU to profile on"),
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_END()
};
static const char * const replay_usage[] = {
"perf sched replay [<options>]",
NULL
};
static const struct option replay_options[] = {
OPT_INTEGER('r', "repeat", &replay_repeat,
"repeat the workload replay N times (-1: infinite)"),
OPT_BOOLEAN('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_END()
};
static void setup_sorting(void)
{
char *tmp, *tok, *str = strdup(sort_order);
for (tok = strtok_r(str, ", ", &tmp);
tok; tok = strtok_r(NULL, ", ", &tmp)) {
if (sort_dimension__add(tok, &sort_list) < 0) {
error("Unknown --sort key: `%s'", tok);
usage_with_options(latency_usage, latency_options);
}
}
free(str);
sort_dimension__add("pid", &cmp_pid);
}
static const char *record_args[] = {
"record",
"-a",
"-R",
"-M",
"-f",
"-m", "1024",
"-c", "1",
"-e", "sched:sched_switch:r",
"-e", "sched:sched_stat_wait:r",
"-e", "sched:sched_stat_sleep:r",
"-e", "sched:sched_stat_iowait:r",
"-e", "sched:sched_stat_runtime:r",
"-e", "sched:sched_process_exit:r",
"-e", "sched:sched_process_fork:r",
"-e", "sched:sched_wakeup:r",
"-e", "sched:sched_migrate_task:r",
};
static int __cmd_record(int argc, const char **argv)
{
unsigned int rec_argc, i, j;
const char **rec_argv;
rec_argc = ARRAY_SIZE(record_args) + argc - 1;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
for (i = 0; i < ARRAY_SIZE(record_args); i++)
rec_argv[i] = strdup(record_args[i]);
for (j = 1; j < (unsigned int)argc; j++, i++)
rec_argv[i] = argv[j];
BUG_ON(i != rec_argc);
return cmd_record(i, rec_argv, NULL);
}
int cmd_sched(int argc, const char **argv, const char *prefix __used)
{
symbol__init();
argc = parse_options(argc, argv, sched_options, sched_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (!argc)
usage_with_options(sched_usage, sched_options);
if (!strncmp(argv[0], "rec", 3)) {
return __cmd_record(argc, argv);
} else if (!strncmp(argv[0], "lat", 3)) {
trace_handler = &lat_ops;
if (argc > 1) {
argc = parse_options(argc, argv, latency_options, latency_usage, 0);
if (argc)
usage_with_options(latency_usage, latency_options);
}
setup_sorting();
__cmd_lat();
} else if (!strcmp(argv[0], "map")) {
trace_handler = &map_ops;
setup_sorting();
__cmd_map();
} else if (!strncmp(argv[0], "rep", 3)) {
trace_handler = &replay_ops;
if (argc) {
argc = parse_options(argc, argv, replay_options, replay_usage, 0);
if (argc)
usage_with_options(replay_usage, replay_options);
}
__cmd_replay();
} else if (!strcmp(argv[0], "trace")) {
/*
* Aliased to 'perf trace' for now:
*/
return cmd_trace(argc, argv, prefix);
} else {
usage_with_options(sched_usage, sched_options);
}
return 0;
}