tmp_suning_uos_patched/kernel/rcutree_plugin.h
Peter Zijlstra ec433f0c51 softirq,rcu: Inform RCU of irq_exit() activity
The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level.  This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level.  This situation
can result in failures as follows:

 $task			IRQ		SoftIRQ

 rcu_read_lock()

 /* do stuff */

 <preempt> |= UNLOCK_BLOCKED

 rcu_read_unlock()
   --t->rcu_read_lock_nesting

			irq_enter();
			/* do stuff, don't use RCU */
			irq_exit();
			  sub_preempt_count(IRQ_EXIT_OFFSET);
			  invoke_softirq()

					ttwu();
					  spin_lock_irq(&pi->lock)
					  rcu_read_lock();
					  /* do stuff */
					  rcu_read_unlock();
					    rcu_read_unlock_special()
					      rcu_report_exp_rnp()
					        ttwu()
					          spin_lock_irq(&pi->lock) /* deadlock */

   rcu_read_unlock_special(t);

Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.

Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.

[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
  until after the special handling would make the thing more robust
  in the face of interrupts as well.  And there is a separate patch
  for that. ]

Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-07-20 10:50:12 -07:00

2011 lines
58 KiB
C

/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Internal non-public definitions that provide either classic
* or preemptible semantics.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright Red Hat, 2009
* Copyright IBM Corporation, 2009
*
* Author: Ingo Molnar <mingo@elte.hu>
* Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
#include <linux/delay.h>
#include <linux/stop_machine.h>
/*
* Check the RCU kernel configuration parameters and print informative
* messages about anything out of the ordinary. If you like #ifdef, you
* will love this function.
*/
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
printk(KERN_INFO
"\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
#endif
#if NUM_RCU_LVL_4 != 0
printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
#endif
}
#ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
static struct rcu_state *rcu_state = &rcu_preempt_state;
static void rcu_read_unlock_special(struct task_struct *t);
static int rcu_preempted_readers_exp(struct rcu_node *rnp);
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
}
/*
* Return the number of RCU-preempt batches processed thus far
* for debug and statistics.
*/
long rcu_batches_completed_preempt(void)
{
return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
/*
* Return the number of RCU batches processed thus far for debug & stats.
*/
long rcu_batches_completed(void)
{
return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);
/*
* Force a quiescent state for preemptible RCU.
*/
void rcu_force_quiescent_state(void)
{
force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
/*
* Record a preemptible-RCU quiescent state for the specified CPU. Note
* that this just means that the task currently running on the CPU is
* not in a quiescent state. There might be any number of tasks blocked
* while in an RCU read-side critical section.
*
* Unlike the other rcu_*_qs() functions, callers to this function
* must disable irqs in order to protect the assignment to
* ->rcu_read_unlock_special.
*/
static void rcu_preempt_qs(int cpu)
{
struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
rdp->passed_quiesc_completed = rdp->gpnum - 1;
barrier();
rdp->passed_quiesc = 1;
current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the blkd_tasks list.
* The task will dequeue itself when it exits the outermost enclosing
* RCU read-side critical section. Therefore, the current grace period
* cannot be permitted to complete until the blkd_tasks list entries
* predating the current grace period drain, in other words, until
* rnp->gp_tasks becomes NULL.
*
* Caller must disable preemption.
*/
static void rcu_preempt_note_context_switch(int cpu)
{
struct task_struct *t = current;
unsigned long flags;
struct rcu_data *rdp;
struct rcu_node *rnp;
if (t->rcu_read_lock_nesting > 0 &&
(t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
/* Possibly blocking in an RCU read-side critical section. */
rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
t->rcu_blocked_node = rnp;
/*
* If this CPU has already checked in, then this task
* will hold up the next grace period rather than the
* current grace period. Queue the task accordingly.
* If the task is queued for the current grace period
* (i.e., this CPU has not yet passed through a quiescent
* state for the current grace period), then as long
* as that task remains queued, the current grace period
* cannot end. Note that there is some uncertainty as
* to exactly when the current grace period started.
* We take a conservative approach, which can result
* in unnecessarily waiting on tasks that started very
* slightly after the current grace period began. C'est
* la vie!!!
*
* But first, note that the current CPU must still be
* on line!
*/
WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
rnp->gp_tasks = &t->rcu_node_entry;
#ifdef CONFIG_RCU_BOOST
if (rnp->boost_tasks != NULL)
rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
} else {
list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
if (rnp->qsmask & rdp->grpmask)
rnp->gp_tasks = &t->rcu_node_entry;
}
raw_spin_unlock_irqrestore(&rnp->lock, flags);
} else if (t->rcu_read_lock_nesting < 0 &&
t->rcu_read_unlock_special) {
/*
* Complete exit from RCU read-side critical section on
* behalf of preempted instance of __rcu_read_unlock().
*/
rcu_read_unlock_special(t);
}
/*
* Either we were not in an RCU read-side critical section to
* begin with, or we have now recorded that critical section
* globally. Either way, we can now note a quiescent state
* for this CPU. Again, if we were in an RCU read-side critical
* section, and if that critical section was blocking the current
* grace period, then the fact that the task has been enqueued
* means that we continue to block the current grace period.
*/
local_irq_save(flags);
rcu_preempt_qs(cpu);
local_irq_restore(flags);
}
/*
* Tree-preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
current->rcu_read_lock_nesting++;
barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Check for preempted RCU readers blocking the current grace period
* for the specified rcu_node structure. If the caller needs a reliable
* answer, it must hold the rcu_node's ->lock.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
return rnp->gp_tasks != NULL;
}
/*
* Record a quiescent state for all tasks that were previously queued
* on the specified rcu_node structure and that were blocking the current
* RCU grace period. The caller must hold the specified rnp->lock with
* irqs disabled, and this lock is released upon return, but irqs remain
* disabled.
*/
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
__releases(rnp->lock)
{
unsigned long mask;
struct rcu_node *rnp_p;
if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return; /* Still need more quiescent states! */
}
rnp_p = rnp->parent;
if (rnp_p == NULL) {
/*
* Either there is only one rcu_node in the tree,
* or tasks were kicked up to root rcu_node due to
* CPUs going offline.
*/
rcu_report_qs_rsp(&rcu_preempt_state, flags);
return;
}
/* Report up the rest of the hierarchy. */
mask = rnp->grpmask;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
}
/*
* Advance a ->blkd_tasks-list pointer to the next entry, instead
* returning NULL if at the end of the list.
*/
static struct list_head *rcu_next_node_entry(struct task_struct *t,
struct rcu_node *rnp)
{
struct list_head *np;
np = t->rcu_node_entry.next;
if (np == &rnp->blkd_tasks)
np = NULL;
return np;
}
/*
* Handle special cases during rcu_read_unlock(), such as needing to
* notify RCU core processing or task having blocked during the RCU
* read-side critical section.
*/
static noinline void rcu_read_unlock_special(struct task_struct *t)
{
int empty;
int empty_exp;
unsigned long flags;
struct list_head *np;
struct rcu_node *rnp;
int special;
/* NMI handlers cannot block and cannot safely manipulate state. */
if (in_nmi())
return;
local_irq_save(flags);
/*
* If RCU core is waiting for this CPU to exit critical section,
* let it know that we have done so.
*/
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS) {
rcu_preempt_qs(smp_processor_id());
}
/* Hardware IRQ handlers cannot block. */
if (in_irq() || in_serving_softirq()) {
local_irq_restore(flags);
return;
}
/* Clean up if blocked during RCU read-side critical section. */
if (special & RCU_READ_UNLOCK_BLOCKED) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
/*
* Remove this task from the list it blocked on. The
* task can migrate while we acquire the lock, but at
* most one time. So at most two passes through loop.
*/
for (;;) {
rnp = t->rcu_blocked_node;
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
if (rnp == t->rcu_blocked_node)
break;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
empty = !rcu_preempt_blocked_readers_cgp(rnp);
empty_exp = !rcu_preempted_readers_exp(rnp);
smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
np = rcu_next_node_entry(t, rnp);
list_del_init(&t->rcu_node_entry);
if (&t->rcu_node_entry == rnp->gp_tasks)
rnp->gp_tasks = np;
if (&t->rcu_node_entry == rnp->exp_tasks)
rnp->exp_tasks = np;
#ifdef CONFIG_RCU_BOOST
if (&t->rcu_node_entry == rnp->boost_tasks)
rnp->boost_tasks = np;
/* Snapshot and clear ->rcu_boosted with rcu_node lock held. */
if (t->rcu_boosted) {
special |= RCU_READ_UNLOCK_BOOSTED;
t->rcu_boosted = 0;
}
#endif /* #ifdef CONFIG_RCU_BOOST */
t->rcu_blocked_node = NULL;
/*
* If this was the last task on the current list, and if
* we aren't waiting on any CPUs, report the quiescent state.
* Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
*/
if (empty)
raw_spin_unlock_irqrestore(&rnp->lock, flags);
else
rcu_report_unblock_qs_rnp(rnp, flags);
#ifdef CONFIG_RCU_BOOST
/* Unboost if we were boosted. */
if (special & RCU_READ_UNLOCK_BOOSTED) {
rt_mutex_unlock(t->rcu_boost_mutex);
t->rcu_boost_mutex = NULL;
}
#endif /* #ifdef CONFIG_RCU_BOOST */
/*
* If this was the last task on the expedited lists,
* then we need to report up the rcu_node hierarchy.
*/
if (!empty_exp && !rcu_preempted_readers_exp(rnp))
rcu_report_exp_rnp(&rcu_preempt_state, rnp);
} else {
local_irq_restore(flags);
}
}
/*
* Tree-preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
if (t->rcu_read_lock_nesting != 1)
--t->rcu_read_lock_nesting;
else {
t->rcu_read_lock_nesting = INT_MIN;
barrier(); /* assign before ->rcu_read_unlock_special load */
if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
rcu_read_unlock_special(t);
barrier(); /* ->rcu_read_unlock_special load before assign */
t->rcu_read_lock_nesting = 0;
}
#ifdef CONFIG_PROVE_LOCKING
{
int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
/*
* Dump detailed information for all tasks blocking the current RCU
* grace period on the specified rcu_node structure.
*/
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
unsigned long flags;
struct task_struct *t;
if (!rcu_preempt_blocked_readers_cgp(rnp))
return;
raw_spin_lock_irqsave(&rnp->lock, flags);
t = list_entry(rnp->gp_tasks,
struct task_struct, rcu_node_entry);
list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
sched_show_task(t);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
/*
* Dump detailed information for all tasks blocking the current RCU
* grace period.
*/
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
struct rcu_node *rnp = rcu_get_root(rsp);
rcu_print_detail_task_stall_rnp(rnp);
rcu_for_each_leaf_node(rsp, rnp)
rcu_print_detail_task_stall_rnp(rnp);
}
#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}
#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
/*
* Scan the current list of tasks blocked within RCU read-side critical
* sections, printing out the tid of each.
*/
static void rcu_print_task_stall(struct rcu_node *rnp)
{
struct task_struct *t;
if (!rcu_preempt_blocked_readers_cgp(rnp))
return;
t = list_entry(rnp->gp_tasks,
struct task_struct, rcu_node_entry);
list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
printk(" P%d", t->pid);
}
/*
* Suppress preemptible RCU's CPU stall warnings by pushing the
* time of the next stall-warning message comfortably far into the
* future.
*/
static void rcu_preempt_stall_reset(void)
{
rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}
/*
* Check that the list of blocked tasks for the newly completed grace
* period is in fact empty. It is a serious bug to complete a grace
* period that still has RCU readers blocked! This function must be
* invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
* must be held by the caller.
*
* Also, if there are blocked tasks on the list, they automatically
* block the newly created grace period, so set up ->gp_tasks accordingly.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
if (!list_empty(&rnp->blkd_tasks))
rnp->gp_tasks = rnp->blkd_tasks.next;
WARN_ON_ONCE(rnp->qsmask);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Handle tasklist migration for case in which all CPUs covered by the
* specified rcu_node have gone offline. Move them up to the root
* rcu_node. The reason for not just moving them to the immediate
* parent is to remove the need for rcu_read_unlock_special() to
* make more than two attempts to acquire the target rcu_node's lock.
* Returns true if there were tasks blocking the current RCU grace
* period.
*
* Returns 1 if there was previously a task blocking the current grace
* period on the specified rcu_node structure.
*
* The caller must hold rnp->lock with irqs disabled.
*/
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp,
struct rcu_data *rdp)
{
struct list_head *lp;
struct list_head *lp_root;
int retval = 0;
struct rcu_node *rnp_root = rcu_get_root(rsp);
struct task_struct *t;
if (rnp == rnp_root) {
WARN_ONCE(1, "Last CPU thought to be offlined?");
return 0; /* Shouldn't happen: at least one CPU online. */
}
/* If we are on an internal node, complain bitterly. */
WARN_ON_ONCE(rnp != rdp->mynode);
/*
* Move tasks up to root rcu_node. Don't try to get fancy for
* this corner-case operation -- just put this node's tasks
* at the head of the root node's list, and update the root node's
* ->gp_tasks and ->exp_tasks pointers to those of this node's,
* if non-NULL. This might result in waiting for more tasks than
* absolutely necessary, but this is a good performance/complexity
* tradeoff.
*/
if (rcu_preempt_blocked_readers_cgp(rnp))
retval |= RCU_OFL_TASKS_NORM_GP;
if (rcu_preempted_readers_exp(rnp))
retval |= RCU_OFL_TASKS_EXP_GP;
lp = &rnp->blkd_tasks;
lp_root = &rnp_root->blkd_tasks;
while (!list_empty(lp)) {
t = list_entry(lp->next, typeof(*t), rcu_node_entry);
raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
list_del(&t->rcu_node_entry);
t->rcu_blocked_node = rnp_root;
list_add(&t->rcu_node_entry, lp_root);
if (&t->rcu_node_entry == rnp->gp_tasks)
rnp_root->gp_tasks = rnp->gp_tasks;
if (&t->rcu_node_entry == rnp->exp_tasks)
rnp_root->exp_tasks = rnp->exp_tasks;
#ifdef CONFIG_RCU_BOOST
if (&t->rcu_node_entry == rnp->boost_tasks)
rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
}
#ifdef CONFIG_RCU_BOOST
/* In case root is being boosted and leaf is not. */
raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
if (rnp_root->boost_tasks != NULL &&
rnp_root->boost_tasks != rnp_root->gp_tasks)
rnp_root->boost_tasks = rnp_root->gp_tasks;
raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */
rnp->gp_tasks = NULL;
rnp->exp_tasks = NULL;
return retval;
}
/*
* Do CPU-offline processing for preemptible RCU.
*/
static void rcu_preempt_offline_cpu(int cpu)
{
__rcu_offline_cpu(cpu, &rcu_preempt_state);
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Check for a quiescent state from the current CPU. When a task blocks,
* the task is recorded in the corresponding CPU's rcu_node structure,
* which is checked elsewhere.
*
* Caller must disable hard irqs.
*/
static void rcu_preempt_check_callbacks(int cpu)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0) {
rcu_preempt_qs(cpu);
return;
}
if (t->rcu_read_lock_nesting > 0 &&
per_cpu(rcu_preempt_data, cpu).qs_pending)
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}
/*
* Process callbacks for preemptible RCU.
*/
static void rcu_preempt_process_callbacks(void)
{
__rcu_process_callbacks(&rcu_preempt_state,
&__get_cpu_var(rcu_preempt_data));
}
#ifdef CONFIG_RCU_BOOST
static void rcu_preempt_do_callbacks(void)
{
rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}
#endif /* #ifdef CONFIG_RCU_BOOST */
/*
* Queue a preemptible-RCU callback for invocation after a grace period.
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);
/**
* synchronize_rcu - wait until a grace period has elapsed.
*
* Control will return to the caller some time after a full grace
* period has elapsed, in other words after all currently executing RCU
* read-side critical sections have completed. Note, however, that
* upon return from synchronize_rcu(), the caller might well be executing
* concurrently with new RCU read-side critical sections that began while
* synchronize_rcu() was waiting. RCU read-side critical sections are
* delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
*/
void synchronize_rcu(void)
{
struct rcu_synchronize rcu;
if (!rcu_scheduler_active)
return;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
/*
* Return non-zero if there are any tasks in RCU read-side critical
* sections blocking the current preemptible-RCU expedited grace period.
* If there is no preemptible-RCU expedited grace period currently in
* progress, returns zero unconditionally.
*/
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
return rnp->exp_tasks != NULL;
}
/*
* return non-zero if there is no RCU expedited grace period in progress
* for the specified rcu_node structure, in other words, if all CPUs and
* tasks covered by the specified rcu_node structure have done their bit
* for the current expedited grace period. Works only for preemptible
* RCU -- other RCU implementation use other means.
*
* Caller must hold sync_rcu_preempt_exp_mutex.
*/
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
return !rcu_preempted_readers_exp(rnp) &&
ACCESS_ONCE(rnp->expmask) == 0;
}
/*
* Report the exit from RCU read-side critical section for the last task
* that queued itself during or before the current expedited preemptible-RCU
* grace period. This event is reported either to the rcu_node structure on
* which the task was queued or to one of that rcu_node structure's ancestors,
* recursively up the tree. (Calm down, calm down, we do the recursion
* iteratively!)
*
* Caller must hold sync_rcu_preempt_exp_mutex.
*/
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
unsigned long flags;
unsigned long mask;
raw_spin_lock_irqsave(&rnp->lock, flags);
for (;;) {
if (!sync_rcu_preempt_exp_done(rnp)) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
break;
}
if (rnp->parent == NULL) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
wake_up(&sync_rcu_preempt_exp_wq);
break;
}
mask = rnp->grpmask;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
rnp = rnp->parent;
raw_spin_lock(&rnp->lock); /* irqs already disabled */
rnp->expmask &= ~mask;
}
}
/*
* Snapshot the tasks blocking the newly started preemptible-RCU expedited
* grace period for the specified rcu_node structure. If there are no such
* tasks, report it up the rcu_node hierarchy.
*
* Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
*/
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
unsigned long flags;
int must_wait = 0;
raw_spin_lock_irqsave(&rnp->lock, flags);
if (list_empty(&rnp->blkd_tasks))
raw_spin_unlock_irqrestore(&rnp->lock, flags);
else {
rnp->exp_tasks = rnp->blkd_tasks.next;
rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
must_wait = 1;
}
if (!must_wait)
rcu_report_exp_rnp(rsp, rnp);
}
/*
* Wait for an rcu-preempt grace period, but expedite it. The basic idea
* is to invoke synchronize_sched_expedited() to push all the tasks to
* the ->blkd_tasks lists and wait for this list to drain.
*/
void synchronize_rcu_expedited(void)
{
unsigned long flags;
struct rcu_node *rnp;
struct rcu_state *rsp = &rcu_preempt_state;
long snap;
int trycount = 0;
smp_mb(); /* Caller's modifications seen first by other CPUs. */
snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
smp_mb(); /* Above access cannot bleed into critical section. */
/*
* Acquire lock, falling back to synchronize_rcu() if too many
* lock-acquisition failures. Of course, if someone does the
* expedited grace period for us, just leave.
*/
while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
if (trycount++ < 10)
udelay(trycount * num_online_cpus());
else {
synchronize_rcu();
return;
}
if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
goto mb_ret; /* Others did our work for us. */
}
if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
goto unlock_mb_ret; /* Others did our work for us. */
/* force all RCU readers onto ->blkd_tasks lists. */
synchronize_sched_expedited();
raw_spin_lock_irqsave(&rsp->onofflock, flags);
/* Initialize ->expmask for all non-leaf rcu_node structures. */
rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
rnp->expmask = rnp->qsmaskinit;
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
}
/* Snapshot current state of ->blkd_tasks lists. */
rcu_for_each_leaf_node(rsp, rnp)
sync_rcu_preempt_exp_init(rsp, rnp);
if (NUM_RCU_NODES > 1)
sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
/* Wait for snapshotted ->blkd_tasks lists to drain. */
rnp = rcu_get_root(rsp);
wait_event(sync_rcu_preempt_exp_wq,
sync_rcu_preempt_exp_done(rnp));
/* Clean up and exit. */
smp_mb(); /* ensure expedited GP seen before counter increment. */
ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
smp_mb(); /* ensure subsequent action seen after grace period. */
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
/*
* Check to see if there is any immediate preemptible-RCU-related work
* to be done.
*/
static int rcu_preempt_pending(int cpu)
{
return __rcu_pending(&rcu_preempt_state,
&per_cpu(rcu_preempt_data, cpu));
}
/*
* Does preemptible RCU need the CPU to stay out of dynticks mode?
*/
static int rcu_preempt_needs_cpu(int cpu)
{
return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}
/**
* rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
*/
void rcu_barrier(void)
{
_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);
/*
* Initialize preemptible RCU's per-CPU data.
*/
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}
/*
* Move preemptible RCU's callbacks from dying CPU to other online CPU.
*/
static void rcu_preempt_send_cbs_to_online(void)
{
rcu_send_cbs_to_online(&rcu_preempt_state);
}
/*
* Initialize preemptible RCU's state structures.
*/
static void __init __rcu_init_preempt(void)
{
rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
}
/*
* Check for a task exiting while in a preemptible-RCU read-side
* critical section, clean up if so. No need to issue warnings,
* as debug_check_no_locks_held() already does this if lockdep
* is enabled.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0)
return;
t->rcu_read_lock_nesting = 1;
__rcu_read_unlock();
}
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
static struct rcu_state *rcu_state = &rcu_sched_state;
/*
* Tell them what RCU they are running.
*/
static void __init rcu_bootup_announce(void)
{
printk(KERN_INFO "Hierarchical RCU implementation.\n");
rcu_bootup_announce_oddness();
}
/*
* Return the number of RCU batches processed thus far for debug & stats.
*/
long rcu_batches_completed(void)
{
return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);
/*
* Force a quiescent state for RCU, which, because there is no preemptible
* RCU, becomes the same as rcu-sched.
*/
void rcu_force_quiescent_state(void)
{
rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
/*
* Because preemptible RCU does not exist, we never have to check for
* CPUs being in quiescent states.
*/
static void rcu_preempt_note_context_switch(int cpu)
{
}
/*
* Because preemptible RCU does not exist, there are never any preempted
* RCU readers.
*/
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/* Because preemptible RCU does not exist, no quieting of tasks. */
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
{
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Because preemptible RCU does not exist, we never have to check for
* tasks blocked within RCU read-side critical sections.
*/
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}
/*
* Because preemptible RCU does not exist, we never have to check for
* tasks blocked within RCU read-side critical sections.
*/
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}
/*
* Because preemptible RCU does not exist, there is no need to suppress
* its CPU stall warnings.
*/
static void rcu_preempt_stall_reset(void)
{
}
/*
* Because there is no preemptible RCU, there can be no readers blocked,
* so there is no need to check for blocked tasks. So check only for
* bogus qsmask values.
*/
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
WARN_ON_ONCE(rnp->qsmask);
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Because preemptible RCU does not exist, it never needs to migrate
* tasks that were blocked within RCU read-side critical sections, and
* such non-existent tasks cannot possibly have been blocking the current
* grace period.
*/
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
struct rcu_node *rnp,
struct rcu_data *rdp)
{
return 0;
}
/*
* Because preemptible RCU does not exist, it never needs CPU-offline
* processing.
*/
static void rcu_preempt_offline_cpu(int cpu)
{
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Because preemptible RCU does not exist, it never has any callbacks
* to check.
*/
static void rcu_preempt_check_callbacks(int cpu)
{
}
/*
* Because preemptible RCU does not exist, it never has any callbacks
* to process.
*/
static void rcu_preempt_process_callbacks(void)
{
}
/*
* Wait for an rcu-preempt grace period, but make it happen quickly.
* But because preemptible RCU does not exist, map to rcu-sched.
*/
void synchronize_rcu_expedited(void)
{
synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
#ifdef CONFIG_HOTPLUG_CPU
/*
* Because preemptible RCU does not exist, there is never any need to
* report on tasks preempted in RCU read-side critical sections during
* expedited RCU grace periods.
*/
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
{
return;
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/*
* Because preemptible RCU does not exist, it never has any work to do.
*/
static int rcu_preempt_pending(int cpu)
{
return 0;
}
/*
* Because preemptible RCU does not exist, it never needs any CPU.
*/
static int rcu_preempt_needs_cpu(int cpu)
{
return 0;
}
/*
* Because preemptible RCU does not exist, rcu_barrier() is just
* another name for rcu_barrier_sched().
*/
void rcu_barrier(void)
{
rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);
/*
* Because preemptible RCU does not exist, there is no per-CPU
* data to initialize.
*/
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}
/*
* Because there is no preemptible RCU, there are no callbacks to move.
*/
static void rcu_preempt_send_cbs_to_online(void)
{
}
/*
* Because preemptible RCU does not exist, it need not be initialized.
*/
static void __init __rcu_init_preempt(void)
{
}
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
#ifdef CONFIG_RCU_BOOST
#include "rtmutex_common.h"
#ifdef CONFIG_RCU_TRACE
static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
if (list_empty(&rnp->blkd_tasks))
rnp->n_balk_blkd_tasks++;
else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
rnp->n_balk_exp_gp_tasks++;
else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
rnp->n_balk_boost_tasks++;
else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
rnp->n_balk_notblocked++;
else if (rnp->gp_tasks != NULL &&
ULONG_CMP_LT(jiffies, rnp->boost_time))
rnp->n_balk_notyet++;
else
rnp->n_balk_nos++;
}
#else /* #ifdef CONFIG_RCU_TRACE */
static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}
#endif /* #else #ifdef CONFIG_RCU_TRACE */
/*
* Carry out RCU priority boosting on the task indicated by ->exp_tasks
* or ->boost_tasks, advancing the pointer to the next task in the
* ->blkd_tasks list.
*
* Note that irqs must be enabled: boosting the task can block.
* Returns 1 if there are more tasks needing to be boosted.
*/
static int rcu_boost(struct rcu_node *rnp)
{
unsigned long flags;
struct rt_mutex mtx;
struct task_struct *t;
struct list_head *tb;
if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
return 0; /* Nothing left to boost. */
raw_spin_lock_irqsave(&rnp->lock, flags);
/*
* Recheck under the lock: all tasks in need of boosting
* might exit their RCU read-side critical sections on their own.
*/
if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return 0;
}
/*
* Preferentially boost tasks blocking expedited grace periods.
* This cannot starve the normal grace periods because a second
* expedited grace period must boost all blocked tasks, including
* those blocking the pre-existing normal grace period.
*/
if (rnp->exp_tasks != NULL) {
tb = rnp->exp_tasks;
rnp->n_exp_boosts++;
} else {
tb = rnp->boost_tasks;
rnp->n_normal_boosts++;
}
rnp->n_tasks_boosted++;
/*
* We boost task t by manufacturing an rt_mutex that appears to
* be held by task t. We leave a pointer to that rt_mutex where
* task t can find it, and task t will release the mutex when it
* exits its outermost RCU read-side critical section. Then
* simply acquiring this artificial rt_mutex will boost task
* t's priority. (Thanks to tglx for suggesting this approach!)
*
* Note that task t must acquire rnp->lock to remove itself from
* the ->blkd_tasks list, which it will do from exit() if from
* nowhere else. We therefore are guaranteed that task t will
* stay around at least until we drop rnp->lock. Note that
* rnp->lock also resolves races between our priority boosting
* and task t's exiting its outermost RCU read-side critical
* section.
*/
t = container_of(tb, struct task_struct, rcu_node_entry);
rt_mutex_init_proxy_locked(&mtx, t);
t->rcu_boost_mutex = &mtx;
t->rcu_boosted = 1;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
return rnp->exp_tasks != NULL || rnp->boost_tasks != NULL;
}
/*
* Timer handler to initiate waking up of boost kthreads that
* have yielded the CPU due to excessive numbers of tasks to
* boost. We wake up the per-rcu_node kthread, which in turn
* will wake up the booster kthread.
*/
static void rcu_boost_kthread_timer(unsigned long arg)
{
invoke_rcu_node_kthread((struct rcu_node *)arg);
}
/*
* Priority-boosting kthread. One per leaf rcu_node and one for the
* root rcu_node.
*/
static int rcu_boost_kthread(void *arg)
{
struct rcu_node *rnp = (struct rcu_node *)arg;
int spincnt = 0;
int more2boost;
for (;;) {
rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
more2boost = rcu_boost(rnp);
if (more2boost)
spincnt++;
else
spincnt = 0;
if (spincnt > 10) {
rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
spincnt = 0;
}
}
/* NOTREACHED */
return 0;
}
/*
* Check to see if it is time to start boosting RCU readers that are
* blocking the current grace period, and, if so, tell the per-rcu_node
* kthread to start boosting them. If there is an expedited grace
* period in progress, it is always time to boost.
*
* The caller must hold rnp->lock, which this function releases,
* but irqs remain disabled. The ->boost_kthread_task is immortal,
* so we don't need to worry about it going away.
*/
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
{
struct task_struct *t;
if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
rnp->n_balk_exp_gp_tasks++;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
return;
}
if (rnp->exp_tasks != NULL ||
(rnp->gp_tasks != NULL &&
rnp->boost_tasks == NULL &&
rnp->qsmask == 0 &&
ULONG_CMP_GE(jiffies, rnp->boost_time))) {
if (rnp->exp_tasks == NULL)
rnp->boost_tasks = rnp->gp_tasks;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
t = rnp->boost_kthread_task;
if (t != NULL)
wake_up_process(t);
} else {
rcu_initiate_boost_trace(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
}
/*
* Wake up the per-CPU kthread to invoke RCU callbacks.
*/
static void invoke_rcu_callbacks_kthread(void)
{
unsigned long flags;
local_irq_save(flags);
__this_cpu_write(rcu_cpu_has_work, 1);
if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
local_irq_restore(flags);
return;
}
wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
local_irq_restore(flags);
}
/*
* Set the affinity of the boost kthread. The CPU-hotplug locks are
* held, so no one should be messing with the existence of the boost
* kthread.
*/
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
cpumask_var_t cm)
{
struct task_struct *t;
t = rnp->boost_kthread_task;
if (t != NULL)
set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
}
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
/*
* Do priority-boost accounting for the start of a new grace period.
*/
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}
/*
* Create an RCU-boost kthread for the specified node if one does not
* already exist. We only create this kthread for preemptible RCU.
* Returns zero if all is well, a negated errno otherwise.
*/
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
struct rcu_node *rnp,
int rnp_index)
{
unsigned long flags;
struct sched_param sp;
struct task_struct *t;
if (&rcu_preempt_state != rsp)
return 0;
rsp->boost = 1;
if (rnp->boost_kthread_task != NULL)
return 0;
t = kthread_create(rcu_boost_kthread, (void *)rnp,
"rcub%d", rnp_index);
if (IS_ERR(t))
return PTR_ERR(t);
raw_spin_lock_irqsave(&rnp->lock, flags);
rnp->boost_kthread_task = t;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
/*
* Stop the RCU's per-CPU kthread when its CPU goes offline,.
*/
static void rcu_stop_cpu_kthread(int cpu)
{
struct task_struct *t;
/* Stop the CPU's kthread. */
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (t != NULL) {
per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
kthread_stop(t);
}
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_kthread_do_work(void)
{
rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
rcu_preempt_do_callbacks();
}
/*
* Wake up the specified per-rcu_node-structure kthread.
* Because the per-rcu_node kthreads are immortal, we don't need
* to do anything to keep them alive.
*/
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
struct task_struct *t;
t = rnp->node_kthread_task;
if (t != NULL)
wake_up_process(t);
}
/*
* Set the specified CPU's kthread to run RT or not, as specified by
* the to_rt argument. The CPU-hotplug locks are held, so the task
* is not going away.
*/
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
int policy;
struct sched_param sp;
struct task_struct *t;
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (t == NULL)
return;
if (to_rt) {
policy = SCHED_FIFO;
sp.sched_priority = RCU_KTHREAD_PRIO;
} else {
policy = SCHED_NORMAL;
sp.sched_priority = 0;
}
sched_setscheduler_nocheck(t, policy, &sp);
}
/*
* Timer handler to initiate the waking up of per-CPU kthreads that
* have yielded the CPU due to excess numbers of RCU callbacks.
* We wake up the per-rcu_node kthread, which in turn will wake up
* the booster kthread.
*/
static void rcu_cpu_kthread_timer(unsigned long arg)
{
struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
struct rcu_node *rnp = rdp->mynode;
atomic_or(rdp->grpmask, &rnp->wakemask);
invoke_rcu_node_kthread(rnp);
}
/*
* Drop to non-real-time priority and yield, but only after posting a
* timer that will cause us to regain our real-time priority if we
* remain preempted. Either way, we restore our real-time priority
* before returning.
*/
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
{
struct sched_param sp;
struct timer_list yield_timer;
setup_timer_on_stack(&yield_timer, f, arg);
mod_timer(&yield_timer, jiffies + 2);
sp.sched_priority = 0;
sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
set_user_nice(current, 19);
schedule();
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
del_timer(&yield_timer);
}
/*
* Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
* This can happen while the corresponding CPU is either coming online
* or going offline. We cannot wait until the CPU is fully online
* before starting the kthread, because the various notifier functions
* can wait for RCU grace periods. So we park rcu_cpu_kthread() until
* the corresponding CPU is online.
*
* Return 1 if the kthread needs to stop, 0 otherwise.
*
* Caller must disable bh. This function can momentarily enable it.
*/
static int rcu_cpu_kthread_should_stop(int cpu)
{
while (cpu_is_offline(cpu) ||
!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
smp_processor_id() != cpu) {
if (kthread_should_stop())
return 1;
per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
local_bh_enable();
schedule_timeout_uninterruptible(1);
if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
set_cpus_allowed_ptr(current, cpumask_of(cpu));
local_bh_disable();
}
per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
return 0;
}
/*
* Per-CPU kernel thread that invokes RCU callbacks. This replaces the
* earlier RCU softirq.
*/
static int rcu_cpu_kthread(void *arg)
{
int cpu = (int)(long)arg;
unsigned long flags;
int spincnt = 0;
unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
char work;
char *workp = &per_cpu(rcu_cpu_has_work, cpu);
for (;;) {
*statusp = RCU_KTHREAD_WAITING;
rcu_wait(*workp != 0 || kthread_should_stop());
local_bh_disable();
if (rcu_cpu_kthread_should_stop(cpu)) {
local_bh_enable();
break;
}
*statusp = RCU_KTHREAD_RUNNING;
per_cpu(rcu_cpu_kthread_loops, cpu)++;
local_irq_save(flags);
work = *workp;
*workp = 0;
local_irq_restore(flags);
if (work)
rcu_kthread_do_work();
local_bh_enable();
if (*workp != 0)
spincnt++;
else
spincnt = 0;
if (spincnt > 10) {
*statusp = RCU_KTHREAD_YIELDING;
rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
spincnt = 0;
}
}
*statusp = RCU_KTHREAD_STOPPED;
return 0;
}
/*
* Spawn a per-CPU kthread, setting up affinity and priority.
* Because the CPU hotplug lock is held, no other CPU will be attempting
* to manipulate rcu_cpu_kthread_task. There might be another CPU
* attempting to access it during boot, but the locking in kthread_bind()
* will enforce sufficient ordering.
*
* Please note that we cannot simply refuse to wake up the per-CPU
* kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
* which can result in softlockup complaints if the task ends up being
* idle for more than a couple of minutes.
*
* However, please note also that we cannot bind the per-CPU kthread to its
* CPU until that CPU is fully online. We also cannot wait until the
* CPU is fully online before we create its per-CPU kthread, as this would
* deadlock the system when CPU notifiers tried waiting for grace
* periods. So we bind the per-CPU kthread to its CPU only if the CPU
* is online. If its CPU is not yet fully online, then the code in
* rcu_cpu_kthread() will wait until it is fully online, and then do
* the binding.
*/
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
struct sched_param sp;
struct task_struct *t;
if (!rcu_scheduler_fully_active ||
per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
return 0;
t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
if (IS_ERR(t))
return PTR_ERR(t);
if (cpu_online(cpu))
kthread_bind(t, cpu);
per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
per_cpu(rcu_cpu_kthread_task, cpu) = t;
wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
return 0;
}
/*
* Per-rcu_node kthread, which is in charge of waking up the per-CPU
* kthreads when needed. We ignore requests to wake up kthreads
* for offline CPUs, which is OK because force_quiescent_state()
* takes care of this case.
*/
static int rcu_node_kthread(void *arg)
{
int cpu;
unsigned long flags;
unsigned long mask;
struct rcu_node *rnp = (struct rcu_node *)arg;
struct sched_param sp;
struct task_struct *t;
for (;;) {
rnp->node_kthread_status = RCU_KTHREAD_WAITING;
rcu_wait(atomic_read(&rnp->wakemask) != 0);
rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
raw_spin_lock_irqsave(&rnp->lock, flags);
mask = atomic_xchg(&rnp->wakemask, 0);
rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
if ((mask & 0x1) == 0)
continue;
preempt_disable();
t = per_cpu(rcu_cpu_kthread_task, cpu);
if (!cpu_online(cpu) || t == NULL) {
preempt_enable();
continue;
}
per_cpu(rcu_cpu_has_work, cpu) = 1;
sp.sched_priority = RCU_KTHREAD_PRIO;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
preempt_enable();
}
}
/* NOTREACHED */
rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
return 0;
}
/*
* Set the per-rcu_node kthread's affinity to cover all CPUs that are
* served by the rcu_node in question. The CPU hotplug lock is still
* held, so the value of rnp->qsmaskinit will be stable.
*
* We don't include outgoingcpu in the affinity set, use -1 if there is
* no outgoing CPU. If there are no CPUs left in the affinity set,
* this function allows the kthread to execute on any CPU.
*/
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
cpumask_var_t cm;
int cpu;
unsigned long mask = rnp->qsmaskinit;
if (rnp->node_kthread_task == NULL)
return;
if (!alloc_cpumask_var(&cm, GFP_KERNEL))
return;
cpumask_clear(cm);
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
if ((mask & 0x1) && cpu != outgoingcpu)
cpumask_set_cpu(cpu, cm);
if (cpumask_weight(cm) == 0) {
cpumask_setall(cm);
for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
cpumask_clear_cpu(cpu, cm);
WARN_ON_ONCE(cpumask_weight(cm) == 0);
}
set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
rcu_boost_kthread_setaffinity(rnp, cm);
free_cpumask_var(cm);
}
/*
* Spawn a per-rcu_node kthread, setting priority and affinity.
* Called during boot before online/offline can happen, or, if
* during runtime, with the main CPU-hotplug locks held. So only
* one of these can be executing at a time.
*/
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
struct rcu_node *rnp)
{
unsigned long flags;
int rnp_index = rnp - &rsp->node[0];
struct sched_param sp;
struct task_struct *t;
if (!rcu_scheduler_fully_active ||
rnp->qsmaskinit == 0)
return 0;
if (rnp->node_kthread_task == NULL) {
t = kthread_create(rcu_node_kthread, (void *)rnp,
"rcun%d", rnp_index);
if (IS_ERR(t))
return PTR_ERR(t);
raw_spin_lock_irqsave(&rnp->lock, flags);
rnp->node_kthread_task = t;
raw_spin_unlock_irqrestore(&rnp->lock, flags);
sp.sched_priority = 99;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
}
return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
}
/*
* Spawn all kthreads -- called as soon as the scheduler is running.
*/
static int __init rcu_spawn_kthreads(void)
{
int cpu;
struct rcu_node *rnp;
rcu_scheduler_fully_active = 1;
for_each_possible_cpu(cpu) {
per_cpu(rcu_cpu_has_work, cpu) = 0;
if (cpu_online(cpu))
(void)rcu_spawn_one_cpu_kthread(cpu);
}
rnp = rcu_get_root(rcu_state);
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
if (NUM_RCU_NODES > 1) {
rcu_for_each_leaf_node(rcu_state, rnp)
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
}
return 0;
}
early_initcall(rcu_spawn_kthreads);
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
struct rcu_node *rnp = rdp->mynode;
/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
if (rcu_scheduler_fully_active) {
(void)rcu_spawn_one_cpu_kthread(cpu);
if (rnp->node_kthread_task == NULL)
(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
}
}
#else /* #ifdef CONFIG_RCU_BOOST */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
{
raw_spin_unlock_irqrestore(&rnp->lock, flags);
}
static void invoke_rcu_callbacks_kthread(void)
{
WARN_ON_ONCE(1);
}
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}
#ifdef CONFIG_HOTPLUG_CPU
static void rcu_stop_cpu_kthread(int cpu)
{
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
}
static int __init rcu_scheduler_really_started(void)
{
rcu_scheduler_fully_active = 1;
return 0;
}
early_initcall(rcu_scheduler_really_started);
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}
#endif /* #else #ifdef CONFIG_RCU_BOOST */
#ifndef CONFIG_SMP
void synchronize_sched_expedited(void)
{
cond_resched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
#else /* #ifndef CONFIG_SMP */
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
static int synchronize_sched_expedited_cpu_stop(void *data)
{
/*
* There must be a full memory barrier on each affected CPU
* between the time that try_stop_cpus() is called and the
* time that it returns.
*
* In the current initial implementation of cpu_stop, the
* above condition is already met when the control reaches
* this point and the following smp_mb() is not strictly
* necessary. Do smp_mb() anyway for documentation and
* robustness against future implementation changes.
*/
smp_mb(); /* See above comment block. */
return 0;
}
/*
* Wait for an rcu-sched grace period to elapse, but use "big hammer"
* approach to force grace period to end quickly. This consumes
* significant time on all CPUs, and is thus not recommended for
* any sort of common-case code.
*
* Note that it is illegal to call this function while holding any
* lock that is acquired by a CPU-hotplug notifier. Failing to
* observe this restriction will result in deadlock.
*
* This implementation can be thought of as an application of ticket
* locking to RCU, with sync_sched_expedited_started and
* sync_sched_expedited_done taking on the roles of the halves
* of the ticket-lock word. Each task atomically increments
* sync_sched_expedited_started upon entry, snapshotting the old value,
* then attempts to stop all the CPUs. If this succeeds, then each
* CPU will have executed a context switch, resulting in an RCU-sched
* grace period. We are then done, so we use atomic_cmpxchg() to
* update sync_sched_expedited_done to match our snapshot -- but
* only if someone else has not already advanced past our snapshot.
*
* On the other hand, if try_stop_cpus() fails, we check the value
* of sync_sched_expedited_done. If it has advanced past our
* initial snapshot, then someone else must have forced a grace period
* some time after we took our snapshot. In this case, our work is
* done for us, and we can simply return. Otherwise, we try again,
* but keep our initial snapshot for purposes of checking for someone
* doing our work for us.
*
* If we fail too many times in a row, we fall back to synchronize_sched().
*/
void synchronize_sched_expedited(void)
{
int firstsnap, s, snap, trycount = 0;
/* Note that atomic_inc_return() implies full memory barrier. */
firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
get_online_cpus();
/*
* Each pass through the following loop attempts to force a
* context switch on each CPU.
*/
while (try_stop_cpus(cpu_online_mask,
synchronize_sched_expedited_cpu_stop,
NULL) == -EAGAIN) {
put_online_cpus();
/* No joy, try again later. Or just synchronize_sched(). */
if (trycount++ < 10)
udelay(trycount * num_online_cpus());
else {
synchronize_sched();
return;
}
/* Check to see if someone else did our work for us. */
s = atomic_read(&sync_sched_expedited_done);
if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
smp_mb(); /* ensure test happens before caller kfree */
return;
}
/*
* Refetching sync_sched_expedited_started allows later
* callers to piggyback on our grace period. We subtract
* 1 to get the same token that the last incrementer got.
* We retry after they started, so our grace period works
* for them, and they started after our first try, so their
* grace period works for us.
*/
get_online_cpus();
snap = atomic_read(&sync_sched_expedited_started) - 1;
smp_mb(); /* ensure read is before try_stop_cpus(). */
}
/*
* Everyone up to our most recent fetch is covered by our grace
* period. Update the counter, but only if our work is still
* relevant -- which it won't be if someone who started later
* than we did beat us to the punch.
*/
do {
s = atomic_read(&sync_sched_expedited_done);
if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
smp_mb(); /* ensure test happens before caller kfree */
break;
}
} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
#endif /* #else #ifndef CONFIG_SMP */
#if !defined(CONFIG_RCU_FAST_NO_HZ)
/*
* Check to see if any future RCU-related work will need to be done
* by the current CPU, even if none need be done immediately, returning
* 1 if so. This function is part of the RCU implementation; it is -not-
* an exported member of the RCU API.
*
* Because we have preemptible RCU, just check whether this CPU needs
* any flavor of RCU. Do not chew up lots of CPU cycles with preemption
* disabled in a most-likely vain attempt to cause RCU not to need this CPU.
*/
int rcu_needs_cpu(int cpu)
{
return rcu_needs_cpu_quick_check(cpu);
}
/*
* Check to see if we need to continue a callback-flush operations to
* allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
* entry is not configured, so we never do need to.
*/
static void rcu_needs_cpu_flush(void)
{
}
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
#define RCU_NEEDS_CPU_FLUSHES 5
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
/*
* Check to see if any future RCU-related work will need to be done
* by the current CPU, even if none need be done immediately, returning
* 1 if so. This function is part of the RCU implementation; it is -not-
* an exported member of the RCU API.
*
* Because we are not supporting preemptible RCU, attempt to accelerate
* any current grace periods so that RCU no longer needs this CPU, but
* only if all other CPUs are already in dynticks-idle mode. This will
* allow the CPU cores to be powered down immediately, as opposed to after
* waiting many milliseconds for grace periods to elapse.
*
* Because it is not legal to invoke rcu_process_callbacks() with irqs
* disabled, we do one pass of force_quiescent_state(), then do a
* invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
* later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
*/
int rcu_needs_cpu(int cpu)
{
int c = 0;
int snap;
int thatcpu;
/* Check for being in the holdoff period. */
if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
return rcu_needs_cpu_quick_check(cpu);
/* Don't bother unless we are the last non-dyntick-idle CPU. */
for_each_online_cpu(thatcpu) {
if (thatcpu == cpu)
continue;
snap = atomic_add_return(0, &per_cpu(rcu_dynticks,
thatcpu).dynticks);
smp_mb(); /* Order sampling of snap with end of grace period. */
if ((snap & 0x1) != 0) {
per_cpu(rcu_dyntick_drain, cpu) = 0;
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
return rcu_needs_cpu_quick_check(cpu);
}
}
/* Check and update the rcu_dyntick_drain sequencing. */
if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
/* First time through, initialize the counter. */
per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
/* We have hit the limit, so time to give up. */
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
return rcu_needs_cpu_quick_check(cpu);
}
/* Do one step pushing remaining RCU callbacks through. */
if (per_cpu(rcu_sched_data, cpu).nxtlist) {
rcu_sched_qs(cpu);
force_quiescent_state(&rcu_sched_state, 0);
c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
}
if (per_cpu(rcu_bh_data, cpu).nxtlist) {
rcu_bh_qs(cpu);
force_quiescent_state(&rcu_bh_state, 0);
c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
}
/* If RCU callbacks are still pending, RCU still needs this CPU. */
if (c)
invoke_rcu_core();
return c;
}
/*
* Check to see if we need to continue a callback-flush operations to
* allow the last CPU to enter dyntick-idle mode.
*/
static void rcu_needs_cpu_flush(void)
{
int cpu = smp_processor_id();
unsigned long flags;
if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
return;
local_irq_save(flags);
(void)rcu_needs_cpu(cpu);
local_irq_restore(flags);
}
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */