f1d4184f12
[ Upstream commit c55dcdd435aa6c6ad6ccac0a4c636d010ee367a4 ]
When a netdev with active TLS offload goes down, tls_device_down is
called to stop the offload and tear down the TLS context. However, the
socket stays alive, and it still points to the TLS context, which is now
deallocated. If a netdev goes up, while the connection is still active,
and the data flow resumes after a number of TCP retransmissions, it will
lead to a use-after-free of the TLS context.
This commit addresses this bug by keeping the context alive until its
normal destruction, and implements the necessary fallbacks, so that the
connection can resume in software (non-offloaded) kTLS mode.
On the TX side tls_sw_fallback is used to encrypt all packets. The RX
side already has all the necessary fallbacks, because receiving
non-decrypted packets is supported. The thing needed on the RX side is
to block resync requests, which are normally produced after receiving
non-decrypted packets.
The necessary synchronization is implemented for a graceful teardown:
first the fallbacks are deployed, then the driver resources are released
(it used to be possible to have a tls_dev_resync after tls_dev_del).
A new flag called TLS_RX_DEV_DEGRADED is added to indicate the fallback
mode. It's used to skip the RX resync logic completely, as it becomes
useless, and some objects may be released (for example, resync_async,
which is allocated and freed by the driver).
Fixes: e8f6979981
("net/tls: Add generic NIC offload infrastructure")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
480 lines
13 KiB
C
480 lines
13 KiB
C
/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <net/tls.h>
|
|
#include <crypto/aead.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <net/ip6_checksum.h>
|
|
|
|
static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk)
|
|
{
|
|
struct scatterlist *src = walk->sg;
|
|
int diff = walk->offset - src->offset;
|
|
|
|
sg_set_page(sg, sg_page(src),
|
|
src->length - diff, walk->offset);
|
|
|
|
scatterwalk_crypto_chain(sg, sg_next(src), 2);
|
|
}
|
|
|
|
static int tls_enc_record(struct aead_request *aead_req,
|
|
struct crypto_aead *aead, char *aad,
|
|
char *iv, __be64 rcd_sn,
|
|
struct scatter_walk *in,
|
|
struct scatter_walk *out, int *in_len)
|
|
{
|
|
unsigned char buf[TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE];
|
|
struct scatterlist sg_in[3];
|
|
struct scatterlist sg_out[3];
|
|
u16 len;
|
|
int rc;
|
|
|
|
len = min_t(int, *in_len, ARRAY_SIZE(buf));
|
|
|
|
scatterwalk_copychunks(buf, in, len, 0);
|
|
scatterwalk_copychunks(buf, out, len, 1);
|
|
|
|
*in_len -= len;
|
|
if (!*in_len)
|
|
return 0;
|
|
|
|
scatterwalk_pagedone(in, 0, 1);
|
|
scatterwalk_pagedone(out, 1, 1);
|
|
|
|
len = buf[4] | (buf[3] << 8);
|
|
len -= TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
|
|
tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE,
|
|
(char *)&rcd_sn, sizeof(rcd_sn), buf[0],
|
|
TLS_1_2_VERSION);
|
|
|
|
memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE,
|
|
TLS_CIPHER_AES_GCM_128_IV_SIZE);
|
|
|
|
sg_init_table(sg_in, ARRAY_SIZE(sg_in));
|
|
sg_init_table(sg_out, ARRAY_SIZE(sg_out));
|
|
sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE);
|
|
sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE);
|
|
chain_to_walk(sg_in + 1, in);
|
|
chain_to_walk(sg_out + 1, out);
|
|
|
|
*in_len -= len;
|
|
if (*in_len < 0) {
|
|
*in_len += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
/* the input buffer doesn't contain the entire record.
|
|
* trim len accordingly. The resulting authentication tag
|
|
* will contain garbage, but we don't care, so we won't
|
|
* include any of it in the output skb
|
|
* Note that we assume the output buffer length
|
|
* is larger then input buffer length + tag size
|
|
*/
|
|
if (*in_len < 0)
|
|
len += *in_len;
|
|
|
|
*in_len = 0;
|
|
}
|
|
|
|
if (*in_len) {
|
|
scatterwalk_copychunks(NULL, in, len, 2);
|
|
scatterwalk_pagedone(in, 0, 1);
|
|
scatterwalk_copychunks(NULL, out, len, 2);
|
|
scatterwalk_pagedone(out, 1, 1);
|
|
}
|
|
|
|
len -= TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv);
|
|
|
|
rc = crypto_aead_encrypt(aead_req);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void tls_init_aead_request(struct aead_request *aead_req,
|
|
struct crypto_aead *aead)
|
|
{
|
|
aead_request_set_tfm(aead_req, aead);
|
|
aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
|
|
}
|
|
|
|
static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead,
|
|
gfp_t flags)
|
|
{
|
|
unsigned int req_size = sizeof(struct aead_request) +
|
|
crypto_aead_reqsize(aead);
|
|
struct aead_request *aead_req;
|
|
|
|
aead_req = kzalloc(req_size, flags);
|
|
if (aead_req)
|
|
tls_init_aead_request(aead_req, aead);
|
|
return aead_req;
|
|
}
|
|
|
|
static int tls_enc_records(struct aead_request *aead_req,
|
|
struct crypto_aead *aead, struct scatterlist *sg_in,
|
|
struct scatterlist *sg_out, char *aad, char *iv,
|
|
u64 rcd_sn, int len)
|
|
{
|
|
struct scatter_walk out, in;
|
|
int rc;
|
|
|
|
scatterwalk_start(&in, sg_in);
|
|
scatterwalk_start(&out, sg_out);
|
|
|
|
do {
|
|
rc = tls_enc_record(aead_req, aead, aad, iv,
|
|
cpu_to_be64(rcd_sn), &in, &out, &len);
|
|
rcd_sn++;
|
|
|
|
} while (rc == 0 && len);
|
|
|
|
scatterwalk_done(&in, 0, 0);
|
|
scatterwalk_done(&out, 1, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Can't use icsk->icsk_af_ops->send_check here because the ip addresses
|
|
* might have been changed by NAT.
|
|
*/
|
|
static void update_chksum(struct sk_buff *skb, int headln)
|
|
{
|
|
struct tcphdr *th = tcp_hdr(skb);
|
|
int datalen = skb->len - headln;
|
|
const struct ipv6hdr *ipv6h;
|
|
const struct iphdr *iph;
|
|
|
|
/* We only changed the payload so if we are using partial we don't
|
|
* need to update anything.
|
|
*/
|
|
if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
|
|
return;
|
|
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->csum_start = skb_transport_header(skb) - skb->head;
|
|
skb->csum_offset = offsetof(struct tcphdr, check);
|
|
|
|
if (skb->sk->sk_family == AF_INET6) {
|
|
ipv6h = ipv6_hdr(skb);
|
|
th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
|
|
datalen, IPPROTO_TCP, 0);
|
|
} else {
|
|
iph = ip_hdr(skb);
|
|
th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen,
|
|
IPPROTO_TCP, 0);
|
|
}
|
|
}
|
|
|
|
static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
int delta;
|
|
|
|
skb_copy_header(nskb, skb);
|
|
|
|
skb_put(nskb, skb->len);
|
|
memcpy(nskb->data, skb->data, headln);
|
|
|
|
nskb->destructor = skb->destructor;
|
|
nskb->sk = sk;
|
|
skb->destructor = NULL;
|
|
skb->sk = NULL;
|
|
|
|
update_chksum(nskb, headln);
|
|
|
|
/* sock_efree means skb must gone through skb_orphan_partial() */
|
|
if (nskb->destructor == sock_efree)
|
|
return;
|
|
|
|
delta = nskb->truesize - skb->truesize;
|
|
if (likely(delta < 0))
|
|
WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
|
|
else if (delta)
|
|
refcount_add(delta, &sk->sk_wmem_alloc);
|
|
}
|
|
|
|
/* This function may be called after the user socket is already
|
|
* closed so make sure we don't use anything freed during
|
|
* tls_sk_proto_close here
|
|
*/
|
|
|
|
static int fill_sg_in(struct scatterlist *sg_in,
|
|
struct sk_buff *skb,
|
|
struct tls_offload_context_tx *ctx,
|
|
u64 *rcd_sn,
|
|
s32 *sync_size,
|
|
int *resync_sgs)
|
|
{
|
|
int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
int payload_len = skb->len - tcp_payload_offset;
|
|
u32 tcp_seq = ntohl(tcp_hdr(skb)->seq);
|
|
struct tls_record_info *record;
|
|
unsigned long flags;
|
|
int remaining;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
record = tls_get_record(ctx, tcp_seq, rcd_sn);
|
|
if (!record) {
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*sync_size = tcp_seq - tls_record_start_seq(record);
|
|
if (*sync_size < 0) {
|
|
int is_start_marker = tls_record_is_start_marker(record);
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
/* This should only occur if the relevant record was
|
|
* already acked. In that case it should be ok
|
|
* to drop the packet and avoid retransmission.
|
|
*
|
|
* There is a corner case where the packet contains
|
|
* both an acked and a non-acked record.
|
|
* We currently don't handle that case and rely
|
|
* on TCP to retranmit a packet that doesn't contain
|
|
* already acked payload.
|
|
*/
|
|
if (!is_start_marker)
|
|
*sync_size = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
remaining = *sync_size;
|
|
for (i = 0; remaining > 0; i++) {
|
|
skb_frag_t *frag = &record->frags[i];
|
|
|
|
__skb_frag_ref(frag);
|
|
sg_set_page(sg_in + i, skb_frag_page(frag),
|
|
skb_frag_size(frag), skb_frag_off(frag));
|
|
|
|
remaining -= skb_frag_size(frag);
|
|
|
|
if (remaining < 0)
|
|
sg_in[i].length += remaining;
|
|
}
|
|
*resync_sgs = i;
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fill_sg_out(struct scatterlist sg_out[3], void *buf,
|
|
struct tls_context *tls_ctx,
|
|
struct sk_buff *nskb,
|
|
int tcp_payload_offset,
|
|
int payload_len,
|
|
int sync_size,
|
|
void *dummy_buf)
|
|
{
|
|
sg_set_buf(&sg_out[0], dummy_buf, sync_size);
|
|
sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len);
|
|
/* Add room for authentication tag produced by crypto */
|
|
dummy_buf += sync_size;
|
|
sg_set_buf(&sg_out[2], dummy_buf, TLS_CIPHER_AES_GCM_128_TAG_SIZE);
|
|
}
|
|
|
|
static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx,
|
|
struct scatterlist sg_out[3],
|
|
struct scatterlist *sg_in,
|
|
struct sk_buff *skb,
|
|
s32 sync_size, u64 rcd_sn)
|
|
{
|
|
int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
|
|
int payload_len = skb->len - tcp_payload_offset;
|
|
void *buf, *iv, *aad, *dummy_buf;
|
|
struct aead_request *aead_req;
|
|
struct sk_buff *nskb = NULL;
|
|
int buf_len;
|
|
|
|
aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC);
|
|
if (!aead_req)
|
|
return NULL;
|
|
|
|
buf_len = TLS_CIPHER_AES_GCM_128_SALT_SIZE +
|
|
TLS_CIPHER_AES_GCM_128_IV_SIZE +
|
|
TLS_AAD_SPACE_SIZE +
|
|
sync_size +
|
|
TLS_CIPHER_AES_GCM_128_TAG_SIZE;
|
|
buf = kmalloc(buf_len, GFP_ATOMIC);
|
|
if (!buf)
|
|
goto free_req;
|
|
|
|
iv = buf;
|
|
memcpy(iv, tls_ctx->crypto_send.aes_gcm_128.salt,
|
|
TLS_CIPHER_AES_GCM_128_SALT_SIZE);
|
|
aad = buf + TLS_CIPHER_AES_GCM_128_SALT_SIZE +
|
|
TLS_CIPHER_AES_GCM_128_IV_SIZE;
|
|
dummy_buf = aad + TLS_AAD_SPACE_SIZE;
|
|
|
|
nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC);
|
|
if (!nskb)
|
|
goto free_buf;
|
|
|
|
skb_reserve(nskb, skb_headroom(skb));
|
|
|
|
fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset,
|
|
payload_len, sync_size, dummy_buf);
|
|
|
|
if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv,
|
|
rcd_sn, sync_size + payload_len) < 0)
|
|
goto free_nskb;
|
|
|
|
complete_skb(nskb, skb, tcp_payload_offset);
|
|
|
|
/* validate_xmit_skb_list assumes that if the skb wasn't segmented
|
|
* nskb->prev will point to the skb itself
|
|
*/
|
|
nskb->prev = nskb;
|
|
|
|
free_buf:
|
|
kfree(buf);
|
|
free_req:
|
|
kfree(aead_req);
|
|
return nskb;
|
|
free_nskb:
|
|
kfree_skb(nskb);
|
|
nskb = NULL;
|
|
goto free_buf;
|
|
}
|
|
|
|
static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
int tcp_payload_offset = skb_transport_offset(skb) + tcp_hdrlen(skb);
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
|
|
int payload_len = skb->len - tcp_payload_offset;
|
|
struct scatterlist *sg_in, sg_out[3];
|
|
struct sk_buff *nskb = NULL;
|
|
int sg_in_max_elements;
|
|
int resync_sgs = 0;
|
|
s32 sync_size = 0;
|
|
u64 rcd_sn;
|
|
|
|
/* worst case is:
|
|
* MAX_SKB_FRAGS in tls_record_info
|
|
* MAX_SKB_FRAGS + 1 in SKB head and frags.
|
|
*/
|
|
sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1;
|
|
|
|
if (!payload_len)
|
|
return skb;
|
|
|
|
sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC);
|
|
if (!sg_in)
|
|
goto free_orig;
|
|
|
|
sg_init_table(sg_in, sg_in_max_elements);
|
|
sg_init_table(sg_out, ARRAY_SIZE(sg_out));
|
|
|
|
if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) {
|
|
/* bypass packets before kernel TLS socket option was set */
|
|
if (sync_size < 0 && payload_len <= -sync_size)
|
|
nskb = skb_get(skb);
|
|
goto put_sg;
|
|
}
|
|
|
|
nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn);
|
|
|
|
put_sg:
|
|
while (resync_sgs)
|
|
put_page(sg_page(&sg_in[--resync_sgs]));
|
|
kfree(sg_in);
|
|
free_orig:
|
|
if (nskb)
|
|
consume_skb(skb);
|
|
else
|
|
kfree_skb(skb);
|
|
return nskb;
|
|
}
|
|
|
|
struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
|
|
struct net_device *dev,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (dev == tls_get_ctx(sk)->netdev)
|
|
return skb;
|
|
|
|
return tls_sw_fallback(sk, skb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
|
|
|
|
struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk,
|
|
struct net_device *dev,
|
|
struct sk_buff *skb)
|
|
{
|
|
return tls_sw_fallback(sk, skb);
|
|
}
|
|
|
|
struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
|
|
{
|
|
return tls_sw_fallback(skb->sk, skb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tls_encrypt_skb);
|
|
|
|
int tls_sw_fallback_init(struct sock *sk,
|
|
struct tls_offload_context_tx *offload_ctx,
|
|
struct tls_crypto_info *crypto_info)
|
|
{
|
|
const u8 *key;
|
|
int rc;
|
|
|
|
offload_ctx->aead_send =
|
|
crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(offload_ctx->aead_send)) {
|
|
rc = PTR_ERR(offload_ctx->aead_send);
|
|
pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc);
|
|
offload_ctx->aead_send = NULL;
|
|
goto err_out;
|
|
}
|
|
|
|
key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key;
|
|
|
|
rc = crypto_aead_setkey(offload_ctx->aead_send, key,
|
|
TLS_CIPHER_AES_GCM_128_KEY_SIZE);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
rc = crypto_aead_setauthsize(offload_ctx->aead_send,
|
|
TLS_CIPHER_AES_GCM_128_TAG_SIZE);
|
|
if (rc)
|
|
goto free_aead;
|
|
|
|
return 0;
|
|
free_aead:
|
|
crypto_free_aead(offload_ctx->aead_send);
|
|
err_out:
|
|
return rc;
|
|
}
|