tmp_suning_uos_patched/arch/powerpc/kvm/booke.c
Scott Wood eb1e4f43e0 kvm/ppc/mpic: add KVM_CAP_IRQ_MPIC
Enabling this capability connects the vcpu to the designated in-kernel
MPIC.  Using explicit connections between vcpus and irqchips allows
for flexibility, but the main benefit at the moment is that it
simplifies the code -- KVM doesn't need vm-global state to remember
which MPIC object is associated with this vm, and it doesn't need to
care about ordering between irqchip creation and vcpu creation.

Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub functions for kvmppc_mpic_{dis,}connect_vcpu]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:24 +02:00

1727 lines
44 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2007
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Scott Wood <scottwood@freescale.com>
* Varun Sethi <varun.sethi@freescale.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <asm/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/cacheflush.h>
#include <asm/dbell.h>
#include <asm/hw_irq.h>
#include <asm/irq.h>
#include <asm/time.h>
#include "timing.h"
#include "booke.h"
#include "trace.h"
unsigned long kvmppc_booke_handlers;
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmio", VCPU_STAT(mmio_exits) },
{ "dcr", VCPU_STAT(dcr_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "itlb_r", VCPU_STAT(itlb_real_miss_exits) },
{ "itlb_v", VCPU_STAT(itlb_virt_miss_exits) },
{ "dtlb_r", VCPU_STAT(dtlb_real_miss_exits) },
{ "dtlb_v", VCPU_STAT(dtlb_virt_miss_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "isi", VCPU_STAT(isi_exits) },
{ "dsi", VCPU_STAT(dsi_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "doorbell", VCPU_STAT(dbell_exits) },
{ "guest doorbell", VCPU_STAT(gdbell_exits) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ NULL }
};
/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
int i;
printk("pc: %08lx msr: %08llx\n", vcpu->arch.pc, vcpu->arch.shared->msr);
printk("lr: %08lx ctr: %08lx\n", vcpu->arch.lr, vcpu->arch.ctr);
printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
vcpu->arch.shared->srr1);
printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
kvmppc_get_gpr(vcpu, i),
kvmppc_get_gpr(vcpu, i+1),
kvmppc_get_gpr(vcpu, i+2),
kvmppc_get_gpr(vcpu, i+3));
}
}
#ifdef CONFIG_SPE
void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_save_guest_spe(vcpu);
vcpu->arch.shadow_msr &= ~MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_load_guest_spe(vcpu);
vcpu->arch.shadow_msr |= MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.shared->msr & MSR_SPE) {
if (!(vcpu->arch.shadow_msr & MSR_SPE))
kvmppc_vcpu_enable_spe(vcpu);
} else if (vcpu->arch.shadow_msr & MSR_SPE) {
kvmppc_vcpu_disable_spe(vcpu);
}
}
#else
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
}
#endif
static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV)
/* We always treat the FP bit as enabled from the host
perspective, so only need to adjust the shadow MSR */
vcpu->arch.shadow_msr &= ~MSR_FP;
vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP;
#endif
}
/*
* Helper function for "full" MSR writes. No need to call this if only
* EE/CE/ME/DE/RI are changing.
*/
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
{
u32 old_msr = vcpu->arch.shared->msr;
#ifdef CONFIG_KVM_BOOKE_HV
new_msr |= MSR_GS;
#endif
vcpu->arch.shared->msr = new_msr;
kvmppc_mmu_msr_notify(vcpu, old_msr);
kvmppc_vcpu_sync_spe(vcpu);
kvmppc_vcpu_sync_fpu(vcpu);
}
static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
unsigned int priority)
{
trace_kvm_booke_queue_irqprio(vcpu, priority);
set_bit(priority, &vcpu->arch.pending_exceptions);
}
static void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
}
static void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
}
static void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu,
ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
}
static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags,
ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT);
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
kvmppc_booke_queue_irqprio(vcpu, prio);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
}
static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG);
}
static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions);
}
static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_GSRR0, srr0);
mtspr(SPRN_GSRR1, srr1);
#else
vcpu->arch.shared->srr0 = srr0;
vcpu->arch.shared->srr1 = srr1;
#endif
}
static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.csrr0 = srr0;
vcpu->arch.csrr1 = srr1;
}
static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) {
vcpu->arch.dsrr0 = srr0;
vcpu->arch.dsrr1 = srr1;
} else {
set_guest_csrr(vcpu, srr0, srr1);
}
}
static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.mcsrr0 = srr0;
vcpu->arch.mcsrr1 = srr1;
}
static unsigned long get_guest_dear(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_KVM_BOOKE_HV
return mfspr(SPRN_GDEAR);
#else
return vcpu->arch.shared->dar;
#endif
}
static void set_guest_dear(struct kvm_vcpu *vcpu, unsigned long dear)
{
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_GDEAR, dear);
#else
vcpu->arch.shared->dar = dear;
#endif
}
static unsigned long get_guest_esr(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_KVM_BOOKE_HV
return mfspr(SPRN_GESR);
#else
return vcpu->arch.shared->esr;
#endif
}
static void set_guest_esr(struct kvm_vcpu *vcpu, u32 esr)
{
#ifdef CONFIG_KVM_BOOKE_HV
mtspr(SPRN_GESR, esr);
#else
vcpu->arch.shared->esr = esr;
#endif
}
static unsigned long get_guest_epr(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_KVM_BOOKE_HV
return mfspr(SPRN_GEPR);
#else
return vcpu->arch.epr;
#endif
}
/* Deliver the interrupt of the corresponding priority, if possible. */
static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
unsigned int priority)
{
int allowed = 0;
ulong msr_mask = 0;
bool update_esr = false, update_dear = false, update_epr = false;
ulong crit_raw = vcpu->arch.shared->critical;
ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
bool crit;
bool keep_irq = false;
enum int_class int_class;
ulong new_msr = vcpu->arch.shared->msr;
/* Truncate crit indicators in 32 bit mode */
if (!(vcpu->arch.shared->msr & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
priority = BOOKE_IRQPRIO_EXTERNAL;
keep_irq = true;
}
if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags)
update_epr = true;
switch (priority) {
case BOOKE_IRQPRIO_DTLB_MISS:
case BOOKE_IRQPRIO_DATA_STORAGE:
case BOOKE_IRQPRIO_ALIGNMENT:
update_dear = true;
/* fall through */
case BOOKE_IRQPRIO_INST_STORAGE:
case BOOKE_IRQPRIO_PROGRAM:
update_esr = true;
/* fall through */
case BOOKE_IRQPRIO_ITLB_MISS:
case BOOKE_IRQPRIO_SYSCALL:
case BOOKE_IRQPRIO_FP_UNAVAIL:
case BOOKE_IRQPRIO_SPE_UNAVAIL:
case BOOKE_IRQPRIO_SPE_FP_DATA:
case BOOKE_IRQPRIO_SPE_FP_ROUND:
case BOOKE_IRQPRIO_AP_UNAVAIL:
allowed = 1;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
case BOOKE_IRQPRIO_WATCHDOG:
case BOOKE_IRQPRIO_CRITICAL:
case BOOKE_IRQPRIO_DBELL_CRIT:
allowed = vcpu->arch.shared->msr & MSR_CE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
int_class = INT_CLASS_CRIT;
break;
case BOOKE_IRQPRIO_MACHINE_CHECK:
allowed = vcpu->arch.shared->msr & MSR_ME;
allowed = allowed && !crit;
int_class = INT_CLASS_MC;
break;
case BOOKE_IRQPRIO_DECREMENTER:
case BOOKE_IRQPRIO_FIT:
keep_irq = true;
/* fall through */
case BOOKE_IRQPRIO_EXTERNAL:
case BOOKE_IRQPRIO_DBELL:
allowed = vcpu->arch.shared->msr & MSR_EE;
allowed = allowed && !crit;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
case BOOKE_IRQPRIO_DEBUG:
allowed = vcpu->arch.shared->msr & MSR_DE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
int_class = INT_CLASS_CRIT;
break;
}
if (allowed) {
switch (int_class) {
case INT_CLASS_NONCRIT:
set_guest_srr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_CRIT:
set_guest_csrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_DBG:
set_guest_dsrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
case INT_CLASS_MC:
set_guest_mcsrr(vcpu, vcpu->arch.pc,
vcpu->arch.shared->msr);
break;
}
vcpu->arch.pc = vcpu->arch.ivpr | vcpu->arch.ivor[priority];
if (update_esr == true)
set_guest_esr(vcpu, vcpu->arch.queued_esr);
if (update_dear == true)
set_guest_dear(vcpu, vcpu->arch.queued_dear);
if (update_epr == true) {
if (vcpu->arch.epr_flags & KVMPPC_EPR_USER)
kvm_make_request(KVM_REQ_EPR_EXIT, vcpu);
else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) {
BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC);
kvmppc_mpic_set_epr(vcpu);
}
}
new_msr &= msr_mask;
#if defined(CONFIG_64BIT)
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
new_msr |= MSR_CM;
#endif
kvmppc_set_msr(vcpu, new_msr);
if (!keep_irq)
clear_bit(priority, &vcpu->arch.pending_exceptions);
}
#ifdef CONFIG_KVM_BOOKE_HV
/*
* If an interrupt is pending but masked, raise a guest doorbell
* so that we are notified when the guest enables the relevant
* MSR bit.
*/
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC);
#endif
return allowed;
}
/*
* Return the number of jiffies until the next timeout. If the timeout is
* longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA
* because the larger value can break the timer APIs.
*/
static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu)
{
u64 tb, wdt_tb, wdt_ticks = 0;
u64 nr_jiffies = 0;
u32 period = TCR_GET_WP(vcpu->arch.tcr);
wdt_tb = 1ULL << (63 - period);
tb = get_tb();
/*
* The watchdog timeout will hapeen when TB bit corresponding
* to watchdog will toggle from 0 to 1.
*/
if (tb & wdt_tb)
wdt_ticks = wdt_tb;
wdt_ticks += wdt_tb - (tb & (wdt_tb - 1));
/* Convert timebase ticks to jiffies */
nr_jiffies = wdt_ticks;
if (do_div(nr_jiffies, tb_ticks_per_jiffy))
nr_jiffies++;
return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA);
}
static void arm_next_watchdog(struct kvm_vcpu *vcpu)
{
unsigned long nr_jiffies;
unsigned long flags;
/*
* If TSR_ENW and TSR_WIS are not set then no need to exit to
* userspace, so clear the KVM_REQ_WATCHDOG request.
*/
if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS))
clear_bit(KVM_REQ_WATCHDOG, &vcpu->requests);
spin_lock_irqsave(&vcpu->arch.wdt_lock, flags);
nr_jiffies = watchdog_next_timeout(vcpu);
/*
* If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA
* then do not run the watchdog timer as this can break timer APIs.
*/
if (nr_jiffies < NEXT_TIMER_MAX_DELTA)
mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies);
else
del_timer(&vcpu->arch.wdt_timer);
spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags);
}
void kvmppc_watchdog_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
u32 tsr, new_tsr;
int final;
do {
new_tsr = tsr = vcpu->arch.tsr;
final = 0;
/* Time out event */
if (tsr & TSR_ENW) {
if (tsr & TSR_WIS)
final = 1;
else
new_tsr = tsr | TSR_WIS;
} else {
new_tsr = tsr | TSR_ENW;
}
} while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr);
if (new_tsr & TSR_WIS) {
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* If this is final watchdog expiry and some action is required
* then exit to userspace.
*/
if (final && (vcpu->arch.tcr & TCR_WRC_MASK) &&
vcpu->arch.watchdog_enabled) {
smp_wmb();
kvm_make_request(KVM_REQ_WATCHDOG, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* Stop running the watchdog timer after final expiration to
* prevent the host from being flooded with timers if the
* guest sets a short period.
* Timers will resume when TSR/TCR is updated next time.
*/
if (!final)
arm_next_watchdog(vcpu);
}
static void update_timer_ints(struct kvm_vcpu *vcpu)
{
if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS))
kvmppc_core_queue_dec(vcpu);
else
kvmppc_core_dequeue_dec(vcpu);
if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS))
kvmppc_core_queue_watchdog(vcpu);
else
kvmppc_core_dequeue_watchdog(vcpu);
}
static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
priority = __ffs(*pending);
while (priority < BOOKE_IRQPRIO_MAX) {
if (kvmppc_booke_irqprio_deliver(vcpu, priority))
break;
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
vcpu->arch.shared->int_pending = !!*pending;
}
/* Check pending exceptions and deliver one, if possible. */
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
int r = 0;
WARN_ON_ONCE(!irqs_disabled());
kvmppc_core_check_exceptions(vcpu);
if (vcpu->requests) {
/* Exception delivery raised request; start over */
return 1;
}
if (vcpu->arch.shared->msr & MSR_WE) {
local_irq_enable();
kvm_vcpu_block(vcpu);
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
local_irq_disable();
kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
r = 1;
};
return r;
}
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
int r = 1; /* Indicate we want to get back into the guest */
if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu))
update_timer_ints(vcpu);
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvmppc_core_flush_tlb(vcpu);
#endif
if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_WATCHDOG;
r = 0;
}
if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) {
vcpu->run->epr.epr = 0;
vcpu->arch.epr_needed = true;
vcpu->run->exit_reason = KVM_EXIT_EPR;
r = 0;
}
return r;
}
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret, s;
#ifdef CONFIG_PPC_FPU
unsigned int fpscr;
int fpexc_mode;
u64 fpr[32];
#endif
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
local_irq_disable();
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0) {
local_irq_enable();
ret = s;
goto out;
}
kvmppc_lazy_ee_enable();
kvm_guest_enter();
#ifdef CONFIG_PPC_FPU
/* Save userspace FPU state in stack */
enable_kernel_fp();
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
fpscr = current->thread.fpscr.val;
fpexc_mode = current->thread.fpexc_mode;
/* Restore guest FPU state to thread */
memcpy(current->thread.fpr, vcpu->arch.fpr, sizeof(vcpu->arch.fpr));
current->thread.fpscr.val = vcpu->arch.fpscr;
/*
* Since we can't trap on MSR_FP in GS-mode, we consider the guest
* as always using the FPU. Kernel usage of FP (via
* enable_kernel_fp()) in this thread must not occur while
* vcpu->fpu_active is set.
*/
vcpu->fpu_active = 1;
kvmppc_load_guest_fp(vcpu);
#endif
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
/* No need for kvm_guest_exit. It's done in handle_exit.
We also get here with interrupts enabled. */
#ifdef CONFIG_PPC_FPU
kvmppc_save_guest_fp(vcpu);
vcpu->fpu_active = 0;
/* Save guest FPU state from thread */
memcpy(vcpu->arch.fpr, current->thread.fpr, sizeof(vcpu->arch.fpr));
vcpu->arch.fpscr = current->thread.fpscr.val;
/* Restore userspace FPU state from stack */
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
current->thread.fpscr.val = fpscr;
current->thread.fpexc_mode = fpexc_mode;
#endif
out:
vcpu->mode = OUTSIDE_GUEST_MODE;
return ret;
}
static int emulation_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
enum emulation_result er;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
/* don't overwrite subtypes, just account kvm_stats */
kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
/* Future optimization: only reload non-volatiles if
* they were actually modified by emulation. */
return RESUME_GUEST_NV;
case EMULATE_DO_DCR:
run->exit_reason = KVM_EXIT_DCR;
return RESUME_HOST;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.pc, vcpu->arch.last_inst);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
kvmppc_core_queue_program(vcpu, ESR_PIL);
return RESUME_HOST;
case EMULATE_EXIT_USER:
return RESUME_HOST;
default:
BUG();
}
}
static void kvmppc_fill_pt_regs(struct pt_regs *regs)
{
ulong r1, ip, msr, lr;
asm("mr %0, 1" : "=r"(r1));
asm("mflr %0" : "=r"(lr));
asm("mfmsr %0" : "=r"(msr));
asm("bl 1f; 1: mflr %0" : "=r"(ip));
memset(regs, 0, sizeof(*regs));
regs->gpr[1] = r1;
regs->nip = ip;
regs->msr = msr;
regs->link = lr;
}
/*
* For interrupts needed to be handled by host interrupt handlers,
* corresponding host handler are called from here in similar way
* (but not exact) as they are called from low level handler
* (such as from arch/powerpc/kernel/head_fsl_booke.S).
*/
static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
struct pt_regs regs;
switch (exit_nr) {
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_fill_pt_regs(&regs);
do_IRQ(&regs);
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_fill_pt_regs(&regs);
timer_interrupt(&regs);
break;
#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_BOOK3E_64)
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_fill_pt_regs(&regs);
doorbell_exception(&regs);
break;
#endif
case BOOKE_INTERRUPT_MACHINE_CHECK:
/* FIXME */
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
kvmppc_fill_pt_regs(&regs);
performance_monitor_exception(&regs);
break;
case BOOKE_INTERRUPT_WATCHDOG:
kvmppc_fill_pt_regs(&regs);
#ifdef CONFIG_BOOKE_WDT
WatchdogException(&regs);
#else
unknown_exception(&regs);
#endif
break;
case BOOKE_INTERRUPT_CRITICAL:
unknown_exception(&regs);
break;
}
}
/**
* kvmppc_handle_exit
*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
int s;
/* update before a new last_exit_type is rewritten */
kvmppc_update_timing_stats(vcpu);
/* restart interrupts if they were meant for the host */
kvmppc_restart_interrupt(vcpu, exit_nr);
local_irq_enable();
trace_kvm_exit(exit_nr, vcpu);
kvm_guest_exit();
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
switch (exit_nr) {
case BOOKE_INTERRUPT_MACHINE_CHECK:
printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
kvmppc_dump_vcpu(vcpu);
/* For debugging, send invalid exit reason to user space */
run->hw.hardware_exit_reason = ~1ULL << 32;
run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR);
r = RESUME_HOST;
break;
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_account_exit(vcpu, DEC_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_WATCHDOG:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_account_exit(vcpu, DBELL_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL_CRIT:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_CE or MSR_ME was not
* set. Once we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_EE was not set. Once
* we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_HV_PRIV:
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_PROGRAM:
if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) {
/*
* Program traps generated by user-level software must
* be handled by the guest kernel.
*
* In GS mode, hypervisor privileged instructions trap
* on BOOKE_INTERRUPT_HV_PRIV, not here, so these are
* actual program interrupts, handled by the guest.
*/
kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
r = RESUME_GUEST;
kvmppc_account_exit(vcpu, USR_PR_INST);
break;
}
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_FP_UNAVAIL:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
kvmppc_account_exit(vcpu, FP_UNAVAIL);
r = RESUME_GUEST;
break;
#ifdef CONFIG_SPE
case BOOKE_INTERRUPT_SPE_UNAVAIL: {
if (vcpu->arch.shared->msr & MSR_SPE)
kvmppc_vcpu_enable_spe(vcpu);
else
kvmppc_booke_queue_irqprio(vcpu,
BOOKE_IRQPRIO_SPE_UNAVAIL);
r = RESUME_GUEST;
break;
}
case BOOKE_INTERRUPT_SPE_FP_DATA:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_SPE_FP_ROUND:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
r = RESUME_GUEST;
break;
#else
case BOOKE_INTERRUPT_SPE_UNAVAIL:
/*
* Guest wants SPE, but host kernel doesn't support it. Send
* an "unimplemented operation" program check to the guest.
*/
kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
r = RESUME_GUEST;
break;
/*
* These really should never happen without CONFIG_SPE,
* as we should never enable the real MSR[SPE] in the guest.
*/
case BOOKE_INTERRUPT_SPE_FP_DATA:
case BOOKE_INTERRUPT_SPE_FP_ROUND:
printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
__func__, exit_nr, vcpu->arch.pc);
run->hw.hardware_exit_reason = exit_nr;
r = RESUME_HOST;
break;
#endif
case BOOKE_INTERRUPT_DATA_STORAGE:
kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, DSI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_INST_STORAGE:
kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, ISI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_ALIGNMENT:
kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
r = RESUME_GUEST;
break;
#ifdef CONFIG_KVM_BOOKE_HV
case BOOKE_INTERRUPT_HV_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR)) {
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
} else {
/*
* hcall from guest userspace -- send privileged
* instruction program check.
*/
kvmppc_core_queue_program(vcpu, ESR_PPR);
}
r = RESUME_GUEST;
break;
#else
case BOOKE_INTERRUPT_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
}
kvmppc_account_exit(vcpu, SYSCALL_EXITS);
r = RESUME_GUEST;
break;
#endif
case BOOKE_INTERRUPT_DTLB_MISS: {
unsigned long eaddr = vcpu->arch.fault_dear;
int gtlb_index;
gpa_t gpaddr;
gfn_t gfn;
#ifdef CONFIG_KVM_E500V2
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
kvmppc_map_magic(vcpu);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
break;
}
#endif
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_core_queue_dtlb_miss(vcpu,
vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_mmu_dtlb_miss(vcpu);
kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
r = RESUME_GUEST;
break;
}
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't, and it is RAM. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
} else {
/* Guest has mapped and accessed a page which is not
* actually RAM. */
vcpu->arch.paddr_accessed = gpaddr;
vcpu->arch.vaddr_accessed = eaddr;
r = kvmppc_emulate_mmio(run, vcpu);
kvmppc_account_exit(vcpu, MMIO_EXITS);
}
break;
}
case BOOKE_INTERRUPT_ITLB_MISS: {
unsigned long eaddr = vcpu->arch.pc;
gpa_t gpaddr;
gfn_t gfn;
int gtlb_index;
r = RESUME_GUEST;
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
kvmppc_mmu_itlb_miss(vcpu);
kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
break;
}
kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
} else {
/* Guest mapped and leaped at non-RAM! */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
}
break;
}
case BOOKE_INTERRUPT_DEBUG: {
u32 dbsr;
vcpu->arch.pc = mfspr(SPRN_CSRR0);
/* clear IAC events in DBSR register */
dbsr = mfspr(SPRN_DBSR);
dbsr &= DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4;
mtspr(SPRN_DBSR, dbsr);
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
r = RESUME_HOST;
break;
}
default:
printk(KERN_EMERG "exit_nr %d\n", exit_nr);
BUG();
}
/*
* To avoid clobbering exit_reason, only check for signals if we
* aren't already exiting to userspace for some other reason.
*/
if (!(r & RESUME_HOST)) {
local_irq_disable();
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0) {
local_irq_enable();
r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
} else {
kvmppc_lazy_ee_enable();
}
}
return r;
}
static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr)
{
u32 old_tsr = vcpu->arch.tsr;
vcpu->arch.tsr = new_tsr;
if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int i;
int r;
vcpu->arch.pc = 0;
vcpu->arch.shared->pir = vcpu->vcpu_id;
kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
kvmppc_set_msr(vcpu, 0);
#ifndef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_msr = MSR_USER | MSR_DE | MSR_IS | MSR_DS;
vcpu->arch.shadow_pid = 1;
vcpu->arch.shared->msr = 0;
#endif
/* Eye-catching numbers so we know if the guest takes an interrupt
* before it's programmed its own IVPR/IVORs. */
vcpu->arch.ivpr = 0x55550000;
for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
vcpu->arch.ivor[i] = 0x7700 | i * 4;
kvmppc_init_timing_stats(vcpu);
r = kvmppc_core_vcpu_setup(vcpu);
kvmppc_sanity_check(vcpu);
return r;
}
int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
/* setup watchdog timer once */
spin_lock_init(&vcpu->arch.wdt_lock);
setup_timer(&vcpu->arch.wdt_timer, kvmppc_watchdog_func,
(unsigned long)vcpu);
return 0;
}
void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
del_timer_sync(&vcpu->arch.wdt_timer);
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = vcpu->arch.pc;
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = vcpu->arch.ctr;
regs->lr = vcpu->arch.lr;
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.shared->msr;
regs->srr0 = vcpu->arch.shared->srr0;
regs->srr1 = vcpu->arch.shared->srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.shared->sprg0;
regs->sprg1 = vcpu->arch.shared->sprg1;
regs->sprg2 = vcpu->arch.shared->sprg2;
regs->sprg3 = vcpu->arch.shared->sprg3;
regs->sprg4 = vcpu->arch.shared->sprg4;
regs->sprg5 = vcpu->arch.shared->sprg5;
regs->sprg6 = vcpu->arch.shared->sprg6;
regs->sprg7 = vcpu->arch.shared->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu->arch.pc = regs->pc;
kvmppc_set_cr(vcpu, regs->cr);
vcpu->arch.ctr = regs->ctr;
vcpu->arch.lr = regs->lr;
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.shared->srr0 = regs->srr0;
vcpu->arch.shared->srr1 = regs->srr1;
kvmppc_set_pid(vcpu, regs->pid);
vcpu->arch.shared->sprg0 = regs->sprg0;
vcpu->arch.shared->sprg1 = regs->sprg1;
vcpu->arch.shared->sprg2 = regs->sprg2;
vcpu->arch.shared->sprg3 = regs->sprg3;
vcpu->arch.shared->sprg4 = regs->sprg4;
vcpu->arch.shared->sprg5 = regs->sprg5;
vcpu->arch.shared->sprg6 = regs->sprg6;
vcpu->arch.shared->sprg7 = regs->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
static void get_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
u64 tb = get_tb();
sregs->u.e.features |= KVM_SREGS_E_BASE;
sregs->u.e.csrr0 = vcpu->arch.csrr0;
sregs->u.e.csrr1 = vcpu->arch.csrr1;
sregs->u.e.mcsr = vcpu->arch.mcsr;
sregs->u.e.esr = get_guest_esr(vcpu);
sregs->u.e.dear = get_guest_dear(vcpu);
sregs->u.e.tsr = vcpu->arch.tsr;
sregs->u.e.tcr = vcpu->arch.tcr;
sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
sregs->u.e.tb = tb;
sregs->u.e.vrsave = vcpu->arch.vrsave;
}
static int set_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
return 0;
vcpu->arch.csrr0 = sregs->u.e.csrr0;
vcpu->arch.csrr1 = sregs->u.e.csrr1;
vcpu->arch.mcsr = sregs->u.e.mcsr;
set_guest_esr(vcpu, sregs->u.e.esr);
set_guest_dear(vcpu, sregs->u.e.dear);
vcpu->arch.vrsave = sregs->u.e.vrsave;
kvmppc_set_tcr(vcpu, sregs->u.e.tcr);
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) {
vcpu->arch.dec = sregs->u.e.dec;
kvmppc_emulate_dec(vcpu);
}
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR)
kvmppc_set_tsr(vcpu, sregs->u.e.tsr);
return 0;
}
static void get_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_ARCH206;
sregs->u.e.pir = vcpu->vcpu_id;
sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
sregs->u.e.decar = vcpu->arch.decar;
sregs->u.e.ivpr = vcpu->arch.ivpr;
}
static int set_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
return 0;
if (sregs->u.e.pir != vcpu->vcpu_id)
return -EINVAL;
vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
vcpu->arch.decar = sregs->u.e.decar;
vcpu->arch.ivpr = sregs->u.e.ivpr;
return 0;
}
void kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_IVOR;
sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
}
int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->pvr = vcpu->arch.pvr;
get_sregs_base(vcpu, sregs);
get_sregs_arch206(vcpu, sregs);
kvmppc_core_get_sregs(vcpu, sregs);
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
if (vcpu->arch.pvr != sregs->pvr)
return -EINVAL;
ret = set_sregs_base(vcpu, sregs);
if (ret < 0)
return ret;
ret = set_sregs_arch206(vcpu, sregs);
if (ret < 0)
return ret;
return kvmppc_core_set_sregs(vcpu, sregs);
}
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = 0;
union kvmppc_one_reg val;
int size;
long int i;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
switch (reg->id) {
case KVM_REG_PPC_IAC1:
case KVM_REG_PPC_IAC2:
case KVM_REG_PPC_IAC3:
case KVM_REG_PPC_IAC4:
i = reg->id - KVM_REG_PPC_IAC1;
val = get_reg_val(reg->id, vcpu->arch.dbg_reg.iac[i]);
break;
case KVM_REG_PPC_DAC1:
case KVM_REG_PPC_DAC2:
i = reg->id - KVM_REG_PPC_DAC1;
val = get_reg_val(reg->id, vcpu->arch.dbg_reg.dac[i]);
break;
case KVM_REG_PPC_EPR: {
u32 epr = get_guest_epr(vcpu);
val = get_reg_val(reg->id, epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR:
val = get_reg_val(reg->id, vcpu->arch.epcr);
break;
#endif
case KVM_REG_PPC_TCR:
val = get_reg_val(reg->id, vcpu->arch.tcr);
break;
case KVM_REG_PPC_TSR:
val = get_reg_val(reg->id, vcpu->arch.tsr);
break;
case KVM_REG_PPC_DEBUG_INST:
val = get_reg_val(reg->id, KVMPPC_INST_EHPRIV);
break;
default:
r = kvmppc_get_one_reg(vcpu, reg->id, &val);
break;
}
if (r)
return r;
if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
r = -EFAULT;
return r;
}
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
int r = 0;
union kvmppc_one_reg val;
int size;
long int i;
size = one_reg_size(reg->id);
if (size > sizeof(val))
return -EINVAL;
if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
return -EFAULT;
switch (reg->id) {
case KVM_REG_PPC_IAC1:
case KVM_REG_PPC_IAC2:
case KVM_REG_PPC_IAC3:
case KVM_REG_PPC_IAC4:
i = reg->id - KVM_REG_PPC_IAC1;
vcpu->arch.dbg_reg.iac[i] = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_DAC1:
case KVM_REG_PPC_DAC2:
i = reg->id - KVM_REG_PPC_DAC1;
vcpu->arch.dbg_reg.dac[i] = set_reg_val(reg->id, val);
break;
case KVM_REG_PPC_EPR: {
u32 new_epr = set_reg_val(reg->id, val);
kvmppc_set_epr(vcpu, new_epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR: {
u32 new_epcr = set_reg_val(reg->id, val);
kvmppc_set_epcr(vcpu, new_epcr);
break;
}
#endif
case KVM_REG_PPC_OR_TSR: {
u32 tsr_bits = set_reg_val(reg->id, val);
kvmppc_set_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_CLEAR_TSR: {
u32 tsr_bits = set_reg_val(reg->id, val);
kvmppc_clr_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_TSR: {
u32 tsr = set_reg_val(reg->id, val);
kvmppc_set_tsr(vcpu, tsr);
break;
}
case KVM_REG_PPC_TCR: {
u32 tcr = set_reg_val(reg->id, val);
kvmppc_set_tcr(vcpu, tcr);
break;
}
default:
r = kvmppc_set_one_reg(vcpu, reg->id, &val);
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int r;
r = kvmppc_core_vcpu_translate(vcpu, tr);
return r;
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -ENOTSUPP;
}
void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem)
{
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old)
{
}
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr)
{
#if defined(CONFIG_64BIT)
vcpu->arch.epcr = new_epcr;
#ifdef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM;
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM;
#endif
#endif
}
void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr)
{
vcpu->arch.tcr = new_tcr;
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
set_bits(tsr_bits, &vcpu->arch.tsr);
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
clear_bits(tsr_bits, &vcpu->arch.tsr);
/*
* We may have stopped the watchdog due to
* being stuck on final expiration.
*/
if (tsr_bits & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_decrementer_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
if (vcpu->arch.tcr & TCR_ARE) {
vcpu->arch.dec = vcpu->arch.decar;
kvmppc_emulate_dec(vcpu);
}
kvmppc_set_tsr_bits(vcpu, TSR_DIS);
}
void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->cpu = smp_processor_id();
current->thread.kvm_vcpu = vcpu;
}
void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu)
{
current->thread.kvm_vcpu = NULL;
vcpu->cpu = -1;
}
int __init kvmppc_booke_init(void)
{
#ifndef CONFIG_KVM_BOOKE_HV
unsigned long ivor[16];
unsigned long *handler = kvmppc_booke_handler_addr;
unsigned long max_ivor = 0;
unsigned long handler_len;
int i;
/* We install our own exception handlers by hijacking IVPR. IVPR must
* be 16-bit aligned, so we need a 64KB allocation. */
kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
VCPU_SIZE_ORDER);
if (!kvmppc_booke_handlers)
return -ENOMEM;
/* XXX make sure our handlers are smaller than Linux's */
/* Copy our interrupt handlers to match host IVORs. That way we don't
* have to swap the IVORs on every guest/host transition. */
ivor[0] = mfspr(SPRN_IVOR0);
ivor[1] = mfspr(SPRN_IVOR1);
ivor[2] = mfspr(SPRN_IVOR2);
ivor[3] = mfspr(SPRN_IVOR3);
ivor[4] = mfspr(SPRN_IVOR4);
ivor[5] = mfspr(SPRN_IVOR5);
ivor[6] = mfspr(SPRN_IVOR6);
ivor[7] = mfspr(SPRN_IVOR7);
ivor[8] = mfspr(SPRN_IVOR8);
ivor[9] = mfspr(SPRN_IVOR9);
ivor[10] = mfspr(SPRN_IVOR10);
ivor[11] = mfspr(SPRN_IVOR11);
ivor[12] = mfspr(SPRN_IVOR12);
ivor[13] = mfspr(SPRN_IVOR13);
ivor[14] = mfspr(SPRN_IVOR14);
ivor[15] = mfspr(SPRN_IVOR15);
for (i = 0; i < 16; i++) {
if (ivor[i] > max_ivor)
max_ivor = i;
handler_len = handler[i + 1] - handler[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
(void *)handler[i], handler_len);
}
handler_len = handler[max_ivor + 1] - handler[max_ivor];
flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
ivor[max_ivor] + handler_len);
#endif /* !BOOKE_HV */
return 0;
}
void __exit kvmppc_booke_exit(void)
{
free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
kvm_exit();
}