79f95c82dc
Add a bulk insert/remove test to random-test Add the quick-test code back as another regression test Signed-off-by: Chris Mason <chris.mason@oracle.com>
1302 lines
33 KiB
C
1302 lines
33 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include "kerncompat.h"
|
|
#include "radix-tree.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
|
|
static int split_node(struct ctree_root *root, struct ctree_path *path,
|
|
int level);
|
|
static int split_leaf(struct ctree_root *root, struct ctree_path *path,
|
|
int data_size);
|
|
static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
|
|
struct tree_buffer *src);
|
|
static int balance_node_right(struct ctree_root *root,
|
|
struct tree_buffer *dst_buf,
|
|
struct tree_buffer *src_buf);
|
|
static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
|
|
int slot);
|
|
|
|
inline void init_path(struct ctree_path *p)
|
|
{
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
void release_path(struct ctree_root *root, struct ctree_path *p)
|
|
{
|
|
int i;
|
|
for (i = 0; i < MAX_LEVEL; i++) {
|
|
if (!p->nodes[i])
|
|
break;
|
|
tree_block_release(root, p->nodes[i]);
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
/*
|
|
* The leaf data grows from end-to-front in the node.
|
|
* this returns the address of the start of the last item,
|
|
* which is the stop of the leaf data stack
|
|
*/
|
|
static inline unsigned int leaf_data_end(struct leaf *leaf)
|
|
{
|
|
unsigned int nr = leaf->header.nritems;
|
|
if (nr == 0)
|
|
return sizeof(leaf->data);
|
|
return leaf->items[nr-1].offset;
|
|
}
|
|
|
|
/*
|
|
* The space between the end of the leaf items and
|
|
* the start of the leaf data. IOW, how much room
|
|
* the leaf has left for both items and data
|
|
*/
|
|
int leaf_free_space(struct leaf *leaf)
|
|
{
|
|
int data_end = leaf_data_end(leaf);
|
|
int nritems = leaf->header.nritems;
|
|
char *items_end = (char *)(leaf->items + nritems + 1);
|
|
return (char *)(leaf->data + data_end) - (char *)items_end;
|
|
}
|
|
|
|
/*
|
|
* compare two keys in a memcmp fashion
|
|
*/
|
|
int comp_keys(struct key *k1, struct key *k2)
|
|
{
|
|
if (k1->objectid > k2->objectid)
|
|
return 1;
|
|
if (k1->objectid < k2->objectid)
|
|
return -1;
|
|
if (k1->flags > k2->flags)
|
|
return 1;
|
|
if (k1->flags < k2->flags)
|
|
return -1;
|
|
if (k1->offset > k2->offset)
|
|
return 1;
|
|
if (k1->offset < k2->offset)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int check_node(struct ctree_path *path, int level)
|
|
{
|
|
int i;
|
|
struct node *parent = NULL;
|
|
struct node *node = &path->nodes[level]->node;
|
|
int parent_slot;
|
|
|
|
if (path->nodes[level + 1])
|
|
parent = &path->nodes[level + 1]->node;
|
|
parent_slot = path->slots[level + 1];
|
|
if (parent && node->header.nritems > 0) {
|
|
struct key *parent_key;
|
|
parent_key = &parent->keys[parent_slot];
|
|
BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
|
|
BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
|
|
}
|
|
BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
|
|
for (i = 0; i < node->header.nritems - 2; i++) {
|
|
BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int check_leaf(struct ctree_path *path, int level)
|
|
{
|
|
int i;
|
|
struct leaf *leaf = &path->nodes[level]->leaf;
|
|
struct node *parent = NULL;
|
|
int parent_slot;
|
|
|
|
if (path->nodes[level + 1])
|
|
parent = &path->nodes[level + 1]->node;
|
|
parent_slot = path->slots[level + 1];
|
|
if (parent && leaf->header.nritems > 0) {
|
|
struct key *parent_key;
|
|
parent_key = &parent->keys[parent_slot];
|
|
BUG_ON(memcmp(parent_key, &leaf->items[0].key,
|
|
sizeof(struct key)));
|
|
BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
|
|
}
|
|
for (i = 0; i < leaf->header.nritems - 2; i++) {
|
|
BUG_ON(comp_keys(&leaf->items[i].key,
|
|
&leaf->items[i+1].key) >= 0);
|
|
BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
|
|
leaf->items[i + 1].size);
|
|
if (i == 0) {
|
|
BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
|
|
LEAF_DATA_SIZE);
|
|
}
|
|
}
|
|
BUG_ON(leaf_free_space(leaf) < 0);
|
|
return 0;
|
|
}
|
|
|
|
int check_block(struct ctree_path *path, int level)
|
|
{
|
|
if (level == 0)
|
|
return check_leaf(path, level);
|
|
return check_node(path, level);
|
|
}
|
|
|
|
/*
|
|
* search for key in the array p. items p are item_size apart
|
|
* and there are 'max' items in p
|
|
* the slot in the array is returned via slot, and it points to
|
|
* the place where you would insert key if it is not found in
|
|
* the array.
|
|
*
|
|
* slot may point to max if the key is bigger than all of the keys
|
|
*/
|
|
int generic_bin_search(char *p, int item_size, struct key *key,
|
|
int max, int *slot)
|
|
{
|
|
int low = 0;
|
|
int high = max;
|
|
int mid;
|
|
int ret;
|
|
struct key *tmp;
|
|
|
|
while(low < high) {
|
|
mid = (low + high) / 2;
|
|
tmp = (struct key *)(p + mid * item_size);
|
|
ret = comp_keys(tmp, key);
|
|
|
|
if (ret < 0)
|
|
low = mid + 1;
|
|
else if (ret > 0)
|
|
high = mid;
|
|
else {
|
|
*slot = mid;
|
|
return 0;
|
|
}
|
|
}
|
|
*slot = low;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* simple bin_search frontend that does the right thing for
|
|
* leaves vs nodes
|
|
*/
|
|
int bin_search(struct node *c, struct key *key, int *slot)
|
|
{
|
|
if (is_leaf(c->header.flags)) {
|
|
struct leaf *l = (struct leaf *)c;
|
|
return generic_bin_search((void *)l->items, sizeof(struct item),
|
|
key, c->header.nritems, slot);
|
|
} else {
|
|
return generic_bin_search((void *)c->keys, sizeof(struct key),
|
|
key, c->header.nritems, slot);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
struct tree_buffer *read_node_slot(struct ctree_root *root,
|
|
struct tree_buffer *parent_buf,
|
|
int slot)
|
|
{
|
|
struct node *node = &parent_buf->node;
|
|
if (slot < 0)
|
|
return NULL;
|
|
if (slot >= node->header.nritems)
|
|
return NULL;
|
|
return read_tree_block(root, node->blockptrs[slot]);
|
|
}
|
|
|
|
static int balance_level(struct ctree_root *root, struct ctree_path *path,
|
|
int level)
|
|
{
|
|
struct tree_buffer *right_buf;
|
|
struct tree_buffer *mid_buf;
|
|
struct tree_buffer *left_buf;
|
|
struct tree_buffer *parent_buf = NULL;
|
|
struct node *right = NULL;
|
|
struct node *mid;
|
|
struct node *left = NULL;
|
|
struct node *parent = NULL;
|
|
int ret = 0;
|
|
int wret;
|
|
int pslot;
|
|
int orig_slot = path->slots[level];
|
|
u64 orig_ptr;
|
|
|
|
if (level == 0)
|
|
return 0;
|
|
|
|
mid_buf = path->nodes[level];
|
|
mid = &mid_buf->node;
|
|
orig_ptr = mid->blockptrs[orig_slot];
|
|
|
|
if (level < MAX_LEVEL - 1)
|
|
parent_buf = path->nodes[level + 1];
|
|
pslot = path->slots[level + 1];
|
|
|
|
if (!parent_buf) {
|
|
struct tree_buffer *child;
|
|
u64 blocknr = mid_buf->blocknr;
|
|
|
|
if (mid->header.nritems != 1)
|
|
return 0;
|
|
|
|
/* promote the child to a root */
|
|
child = read_node_slot(root, mid_buf, 0);
|
|
BUG_ON(!child);
|
|
root->node = child;
|
|
path->nodes[level] = NULL;
|
|
/* once for the path */
|
|
tree_block_release(root, mid_buf);
|
|
/* once for the root ptr */
|
|
tree_block_release(root, mid_buf);
|
|
return free_extent(root, blocknr, 1);
|
|
}
|
|
parent = &parent_buf->node;
|
|
|
|
if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
|
|
return 0;
|
|
|
|
left_buf = read_node_slot(root, parent_buf, pslot - 1);
|
|
right_buf = read_node_slot(root, parent_buf, pslot + 1);
|
|
|
|
/* first, try to make some room in the middle buffer */
|
|
if (left_buf) {
|
|
left = &left_buf->node;
|
|
orig_slot += left->header.nritems;
|
|
wret = push_node_left(root, left_buf, mid_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
|
|
/*
|
|
* then try to empty the right most buffer into the middle
|
|
*/
|
|
if (right_buf) {
|
|
right = &right_buf->node;
|
|
wret = push_node_left(root, mid_buf, right_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (right->header.nritems == 0) {
|
|
u64 blocknr = right_buf->blocknr;
|
|
tree_block_release(root, right_buf);
|
|
right_buf = NULL;
|
|
right = NULL;
|
|
wret = del_ptr(root, path, level + 1, pslot + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = free_extent(root, blocknr, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
memcpy(parent->keys + pslot + 1, right->keys,
|
|
sizeof(struct key));
|
|
wret = write_tree_block(root, parent_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
}
|
|
if (mid->header.nritems == 1) {
|
|
/*
|
|
* we're not allowed to leave a node with one item in the
|
|
* tree during a delete. A deletion from lower in the tree
|
|
* could try to delete the only pointer in this node.
|
|
* So, pull some keys from the left.
|
|
* There has to be a left pointer at this point because
|
|
* otherwise we would have pulled some pointers from the
|
|
* right
|
|
*/
|
|
BUG_ON(!left_buf);
|
|
wret = balance_node_right(root, mid_buf, left_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
BUG_ON(wret == 1);
|
|
}
|
|
if (mid->header.nritems == 0) {
|
|
/* we've managed to empty the middle node, drop it */
|
|
u64 blocknr = mid_buf->blocknr;
|
|
tree_block_release(root, mid_buf);
|
|
mid_buf = NULL;
|
|
mid = NULL;
|
|
wret = del_ptr(root, path, level + 1, pslot);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = free_extent(root, blocknr, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
/* update the parent key to reflect our changes */
|
|
memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
|
|
wret = write_tree_block(root, parent_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
|
|
/* update the path */
|
|
if (left_buf) {
|
|
if (left->header.nritems > orig_slot) {
|
|
left_buf->count++; // released below
|
|
path->nodes[level] = left_buf;
|
|
path->slots[level + 1] -= 1;
|
|
path->slots[level] = orig_slot;
|
|
if (mid_buf)
|
|
tree_block_release(root, mid_buf);
|
|
} else {
|
|
orig_slot -= left->header.nritems;
|
|
path->slots[level] = orig_slot;
|
|
}
|
|
}
|
|
/* double check we haven't messed things up */
|
|
check_block(path, level);
|
|
if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
|
|
BUG();
|
|
|
|
if (right_buf)
|
|
tree_block_release(root, right_buf);
|
|
if (left_buf)
|
|
tree_block_release(root, left_buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* look for key in the tree. path is filled in with nodes along the way
|
|
* if key is found, we return zero and you can find the item in the leaf
|
|
* level of the path (level 0)
|
|
*
|
|
* If the key isn't found, the path points to the slot where it should
|
|
* be inserted, and 1 is returned. If there are other errors during the
|
|
* search a negative error number is returned.
|
|
*
|
|
* if ins_len > 0, nodes and leaves will be split as we walk down the
|
|
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
|
|
* possible)
|
|
*/
|
|
int search_slot(struct ctree_root *root, struct key *key,
|
|
struct ctree_path *p, int ins_len)
|
|
{
|
|
struct tree_buffer *b;
|
|
struct node *c;
|
|
int slot;
|
|
int ret;
|
|
int level;
|
|
|
|
again:
|
|
b = root->node;
|
|
b->count++;
|
|
while (b) {
|
|
c = &b->node;
|
|
level = node_level(c->header.flags);
|
|
p->nodes[level] = b;
|
|
ret = check_block(p, level);
|
|
if (ret)
|
|
return -1;
|
|
ret = bin_search(c, key, &slot);
|
|
if (!is_leaf(c->header.flags)) {
|
|
if (ret && slot > 0)
|
|
slot -= 1;
|
|
p->slots[level] = slot;
|
|
if (ins_len > 0 &&
|
|
c->header.nritems == NODEPTRS_PER_BLOCK) {
|
|
int sret = split_node(root, p, level);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
c = &b->node;
|
|
slot = p->slots[level];
|
|
} else if (ins_len < 0) {
|
|
int sret = balance_level(root, p, level);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
if (!b)
|
|
goto again;
|
|
c = &b->node;
|
|
slot = p->slots[level];
|
|
BUG_ON(c->header.nritems == 1);
|
|
}
|
|
b = read_tree_block(root, c->blockptrs[slot]);
|
|
} else {
|
|
struct leaf *l = (struct leaf *)c;
|
|
p->slots[level] = slot;
|
|
if (ins_len > 0 && leaf_free_space(l) <
|
|
sizeof(struct item) + ins_len) {
|
|
int sret = split_leaf(root, p, ins_len);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
}
|
|
BUG_ON(root->node->count == 1);
|
|
return ret;
|
|
}
|
|
}
|
|
BUG_ON(root->node->count == 1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* adjust the pointers going up the tree, starting at level
|
|
* making sure the right key of each node is points to 'key'.
|
|
* This is used after shifting pointers to the left, so it stops
|
|
* fixing up pointers when a given leaf/node is not in slot 0 of the
|
|
* higher levels
|
|
*
|
|
* If this fails to write a tree block, it returns -1, but continues
|
|
* fixing up the blocks in ram so the tree is consistent.
|
|
*/
|
|
static int fixup_low_keys(struct ctree_root *root,
|
|
struct ctree_path *path, struct key *key,
|
|
int level)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
int wret;
|
|
for (i = level; i < MAX_LEVEL; i++) {
|
|
struct node *t;
|
|
int tslot = path->slots[i];
|
|
if (!path->nodes[i])
|
|
break;
|
|
t = &path->nodes[i]->node;
|
|
memcpy(t->keys + tslot, key, sizeof(*key));
|
|
wret = write_tree_block(root, path->nodes[i]);
|
|
if (wret)
|
|
ret = wret;
|
|
if (tslot != 0)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node left in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the left hand block.
|
|
*/
|
|
static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
|
|
struct tree_buffer *src_buf)
|
|
{
|
|
struct node *src = &src_buf->node;
|
|
struct node *dst = &dst_buf->node;
|
|
int push_items = 0;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
src_nritems = src->header.nritems;
|
|
dst_nritems = dst->header.nritems;
|
|
push_items = NODEPTRS_PER_BLOCK - dst_nritems;
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (src_nritems < push_items)
|
|
push_items = src_nritems;
|
|
|
|
memcpy(dst->keys + dst_nritems, src->keys,
|
|
push_items * sizeof(struct key));
|
|
memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
|
|
push_items * sizeof(u64));
|
|
if (push_items < src_nritems) {
|
|
memmove(src->keys, src->keys + push_items,
|
|
(src_nritems - push_items) * sizeof(struct key));
|
|
memmove(src->blockptrs, src->blockptrs + push_items,
|
|
(src_nritems - push_items) * sizeof(u64));
|
|
}
|
|
src->header.nritems -= push_items;
|
|
dst->header.nritems += push_items;
|
|
|
|
wret = write_tree_block(root, src_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
|
|
wret = write_tree_block(root, dst_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node right in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the right hand block.
|
|
*
|
|
* this will only push up to 1/2 the contents of the left node over
|
|
*/
|
|
static int balance_node_right(struct ctree_root *root,
|
|
struct tree_buffer *dst_buf,
|
|
struct tree_buffer *src_buf)
|
|
{
|
|
struct node *src = &src_buf->node;
|
|
struct node *dst = &dst_buf->node;
|
|
int push_items = 0;
|
|
int max_push;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
src_nritems = src->header.nritems;
|
|
dst_nritems = dst->header.nritems;
|
|
push_items = NODEPTRS_PER_BLOCK - dst_nritems;
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
max_push = src_nritems / 2 + 1;
|
|
/* don't try to empty the node */
|
|
if (max_push > src_nritems)
|
|
return 1;
|
|
if (max_push < push_items)
|
|
push_items = max_push;
|
|
|
|
memmove(dst->keys + push_items, dst->keys,
|
|
dst_nritems * sizeof(struct key));
|
|
memmove(dst->blockptrs + push_items, dst->blockptrs,
|
|
dst_nritems * sizeof(u64));
|
|
memcpy(dst->keys, src->keys + src_nritems - push_items,
|
|
push_items * sizeof(struct key));
|
|
memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
|
|
push_items * sizeof(u64));
|
|
|
|
src->header.nritems -= push_items;
|
|
dst->header.nritems += push_items;
|
|
|
|
wret = write_tree_block(root, src_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
|
|
wret = write_tree_block(root, dst_buf);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to insert a new root level in the tree.
|
|
* A new node is allocated, and a single item is inserted to
|
|
* point to the existing root
|
|
*
|
|
* returns zero on success or < 0 on failure.
|
|
*/
|
|
static int insert_new_root(struct ctree_root *root,
|
|
struct ctree_path *path, int level)
|
|
{
|
|
struct tree_buffer *t;
|
|
struct node *lower;
|
|
struct node *c;
|
|
struct key *lower_key;
|
|
|
|
BUG_ON(path->nodes[level]);
|
|
BUG_ON(path->nodes[level-1] != root->node);
|
|
|
|
t = alloc_free_block(root);
|
|
c = &t->node;
|
|
memset(c, 0, sizeof(c));
|
|
c->header.nritems = 1;
|
|
c->header.flags = node_level(level);
|
|
c->header.blocknr = t->blocknr;
|
|
c->header.parentid = root->node->node.header.parentid;
|
|
lower = &path->nodes[level-1]->node;
|
|
if (is_leaf(lower->header.flags))
|
|
lower_key = &((struct leaf *)lower)->items[0].key;
|
|
else
|
|
lower_key = lower->keys;
|
|
memcpy(c->keys, lower_key, sizeof(struct key));
|
|
c->blockptrs[0] = path->nodes[level-1]->blocknr;
|
|
/* the super has an extra ref to root->node */
|
|
tree_block_release(root, root->node);
|
|
root->node = t;
|
|
t->count++;
|
|
write_tree_block(root, t);
|
|
path->nodes[level] = t;
|
|
path->slots[level] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* worker function to insert a single pointer in a node.
|
|
* the node should have enough room for the pointer already
|
|
*
|
|
* slot and level indicate where you want the key to go, and
|
|
* blocknr is the block the key points to.
|
|
*
|
|
* returns zero on success and < 0 on any error
|
|
*/
|
|
static int insert_ptr(struct ctree_root *root,
|
|
struct ctree_path *path, struct key *key,
|
|
u64 blocknr, int slot, int level)
|
|
{
|
|
struct node *lower;
|
|
int nritems;
|
|
|
|
BUG_ON(!path->nodes[level]);
|
|
lower = &path->nodes[level]->node;
|
|
nritems = lower->header.nritems;
|
|
if (slot > nritems)
|
|
BUG();
|
|
if (nritems == NODEPTRS_PER_BLOCK)
|
|
BUG();
|
|
if (slot != nritems) {
|
|
memmove(lower->keys + slot + 1, lower->keys + slot,
|
|
(nritems - slot) * sizeof(struct key));
|
|
memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
|
|
(nritems - slot) * sizeof(u64));
|
|
}
|
|
memcpy(lower->keys + slot, key, sizeof(struct key));
|
|
lower->blockptrs[slot] = blocknr;
|
|
lower->header.nritems++;
|
|
if (lower->keys[1].objectid == 0)
|
|
BUG();
|
|
write_tree_block(root, path->nodes[level]);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* split the node at the specified level in path in two.
|
|
* The path is corrected to point to the appropriate node after the split
|
|
*
|
|
* Before splitting this tries to make some room in the node by pushing
|
|
* left and right, if either one works, it returns right away.
|
|
*
|
|
* returns 0 on success and < 0 on failure
|
|
*/
|
|
static int split_node(struct ctree_root *root, struct ctree_path *path,
|
|
int level)
|
|
{
|
|
struct tree_buffer *t;
|
|
struct node *c;
|
|
struct tree_buffer *split_buffer;
|
|
struct node *split;
|
|
int mid;
|
|
int ret;
|
|
int wret;
|
|
|
|
t = path->nodes[level];
|
|
c = &t->node;
|
|
if (t == root->node) {
|
|
/* trying to split the root, lets make a new one */
|
|
ret = insert_new_root(root, path, level + 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
split_buffer = alloc_free_block(root);
|
|
split = &split_buffer->node;
|
|
split->header.flags = c->header.flags;
|
|
split->header.blocknr = split_buffer->blocknr;
|
|
split->header.parentid = root->node->node.header.parentid;
|
|
mid = (c->header.nritems + 1) / 2;
|
|
memcpy(split->keys, c->keys + mid,
|
|
(c->header.nritems - mid) * sizeof(struct key));
|
|
memcpy(split->blockptrs, c->blockptrs + mid,
|
|
(c->header.nritems - mid) * sizeof(u64));
|
|
split->header.nritems = c->header.nritems - mid;
|
|
c->header.nritems = mid;
|
|
ret = 0;
|
|
|
|
wret = write_tree_block(root, t);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = write_tree_block(root, split_buffer);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
|
|
path->slots[level + 1] + 1, level + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
if (path->slots[level] >= mid) {
|
|
path->slots[level] -= mid;
|
|
tree_block_release(root, t);
|
|
path->nodes[level] = split_buffer;
|
|
path->slots[level + 1] += 1;
|
|
} else {
|
|
tree_block_release(root, split_buffer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* how many bytes are required to store the items in a leaf. start
|
|
* and nr indicate which items in the leaf to check. This totals up the
|
|
* space used both by the item structs and the item data
|
|
*/
|
|
static int leaf_space_used(struct leaf *l, int start, int nr)
|
|
{
|
|
int data_len;
|
|
int end = start + nr - 1;
|
|
|
|
if (!nr)
|
|
return 0;
|
|
data_len = l->items[start].offset + l->items[start].size;
|
|
data_len = data_len - l->items[end].offset;
|
|
data_len += sizeof(struct item) * nr;
|
|
return data_len;
|
|
}
|
|
|
|
/*
|
|
* push some data in the path leaf to the right, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*
|
|
* returns 1 if the push failed because the other node didn't have enough
|
|
* room, 0 if everything worked out and < 0 if there were major errors.
|
|
*/
|
|
static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
|
|
int data_size)
|
|
{
|
|
struct tree_buffer *left_buf = path->nodes[0];
|
|
struct leaf *left = &left_buf->leaf;
|
|
struct leaf *right;
|
|
struct tree_buffer *right_buf;
|
|
struct tree_buffer *upper;
|
|
int slot;
|
|
int i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
struct item *item;
|
|
|
|
slot = path->slots[1];
|
|
if (!path->nodes[1]) {
|
|
return 1;
|
|
}
|
|
upper = path->nodes[1];
|
|
if (slot >= upper->node.header.nritems - 1) {
|
|
return 1;
|
|
}
|
|
right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
|
|
right = &right_buf->leaf;
|
|
free_space = leaf_free_space(right);
|
|
if (free_space < data_size + sizeof(struct item)) {
|
|
tree_block_release(root, right_buf);
|
|
return 1;
|
|
}
|
|
for (i = left->header.nritems - 1; i >= 0; i--) {
|
|
item = left->items + i;
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(*item);
|
|
if (item->size + sizeof(*item) + push_space > free_space)
|
|
break;
|
|
push_items++;
|
|
push_space += item->size + sizeof(*item);
|
|
}
|
|
if (push_items == 0) {
|
|
tree_block_release(root, right_buf);
|
|
return 1;
|
|
}
|
|
/* push left to right */
|
|
push_space = left->items[left->header.nritems - push_items].offset +
|
|
left->items[left->header.nritems - push_items].size;
|
|
push_space -= leaf_data_end(left);
|
|
/* make room in the right data area */
|
|
memmove(right->data + leaf_data_end(right) - push_space,
|
|
right->data + leaf_data_end(right),
|
|
LEAF_DATA_SIZE - leaf_data_end(right));
|
|
/* copy from the left data area */
|
|
memcpy(right->data + LEAF_DATA_SIZE - push_space,
|
|
left->data + leaf_data_end(left),
|
|
push_space);
|
|
memmove(right->items + push_items, right->items,
|
|
right->header.nritems * sizeof(struct item));
|
|
/* copy the items from left to right */
|
|
memcpy(right->items, left->items + left->header.nritems - push_items,
|
|
push_items * sizeof(struct item));
|
|
|
|
/* update the item pointers */
|
|
right->header.nritems += push_items;
|
|
push_space = LEAF_DATA_SIZE;
|
|
for (i = 0; i < right->header.nritems; i++) {
|
|
right->items[i].offset = push_space - right->items[i].size;
|
|
push_space = right->items[i].offset;
|
|
}
|
|
left->header.nritems -= push_items;
|
|
|
|
write_tree_block(root, left_buf);
|
|
write_tree_block(root, right_buf);
|
|
memcpy(upper->node.keys + slot + 1,
|
|
&right->items[0].key, sizeof(struct key));
|
|
write_tree_block(root, upper);
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] >= left->header.nritems) {
|
|
path->slots[0] -= left->header.nritems;
|
|
tree_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buf;
|
|
path->slots[1] += 1;
|
|
} else {
|
|
tree_block_release(root, right_buf);
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* push some data in the path leaf to the left, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*/
|
|
static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
|
|
int data_size)
|
|
{
|
|
struct tree_buffer *right_buf = path->nodes[0];
|
|
struct leaf *right = &right_buf->leaf;
|
|
struct tree_buffer *t;
|
|
struct leaf *left;
|
|
int slot;
|
|
int i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
struct item *item;
|
|
int old_left_nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
slot = path->slots[1];
|
|
if (slot == 0) {
|
|
return 1;
|
|
}
|
|
if (!path->nodes[1]) {
|
|
return 1;
|
|
}
|
|
t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
|
|
left = &t->leaf;
|
|
free_space = leaf_free_space(left);
|
|
if (free_space < data_size + sizeof(struct item)) {
|
|
tree_block_release(root, t);
|
|
return 1;
|
|
}
|
|
for (i = 0; i < right->header.nritems; i++) {
|
|
item = right->items + i;
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(*item);
|
|
if (item->size + sizeof(*item) + push_space > free_space)
|
|
break;
|
|
push_items++;
|
|
push_space += item->size + sizeof(*item);
|
|
}
|
|
if (push_items == 0) {
|
|
tree_block_release(root, t);
|
|
return 1;
|
|
}
|
|
/* push data from right to left */
|
|
memcpy(left->items + left->header.nritems,
|
|
right->items, push_items * sizeof(struct item));
|
|
push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
|
|
memcpy(left->data + leaf_data_end(left) - push_space,
|
|
right->data + right->items[push_items - 1].offset,
|
|
push_space);
|
|
old_left_nritems = left->header.nritems;
|
|
BUG_ON(old_left_nritems < 0);
|
|
|
|
for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
|
|
left->items[i].offset -= LEAF_DATA_SIZE -
|
|
left->items[old_left_nritems -1].offset;
|
|
}
|
|
left->header.nritems += push_items;
|
|
|
|
/* fixup right node */
|
|
push_space = right->items[push_items-1].offset - leaf_data_end(right);
|
|
memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
|
|
leaf_data_end(right), push_space);
|
|
memmove(right->items, right->items + push_items,
|
|
(right->header.nritems - push_items) * sizeof(struct item));
|
|
right->header.nritems -= push_items;
|
|
push_space = LEAF_DATA_SIZE;
|
|
|
|
for (i = 0; i < right->header.nritems; i++) {
|
|
right->items[i].offset = push_space - right->items[i].size;
|
|
push_space = right->items[i].offset;
|
|
}
|
|
|
|
wret = write_tree_block(root, t);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = write_tree_block(root, right_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
wret = fixup_low_keys(root, path, &right->items[0].key, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] < push_items) {
|
|
path->slots[0] += old_left_nritems;
|
|
tree_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = t;
|
|
path->slots[1] -= 1;
|
|
} else {
|
|
tree_block_release(root, t);
|
|
path->slots[0] -= push_items;
|
|
}
|
|
BUG_ON(path->slots[0] < 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* split the path's leaf in two, making sure there is at least data_size
|
|
* available for the resulting leaf level of the path.
|
|
*
|
|
* returns 0 if all went well and < 0 on failure.
|
|
*/
|
|
static int split_leaf(struct ctree_root *root, struct ctree_path *path,
|
|
int data_size)
|
|
{
|
|
struct tree_buffer *l_buf;
|
|
struct leaf *l;
|
|
int nritems;
|
|
int mid;
|
|
int slot;
|
|
struct leaf *right;
|
|
struct tree_buffer *right_buffer;
|
|
int space_needed = data_size + sizeof(struct item);
|
|
int data_copy_size;
|
|
int rt_data_off;
|
|
int i;
|
|
int ret;
|
|
int wret;
|
|
|
|
wret = push_leaf_left(root, path, data_size);
|
|
if (wret < 0)
|
|
return wret;
|
|
if (wret) {
|
|
wret = push_leaf_right(root, path, data_size);
|
|
if (wret < 0)
|
|
return wret;
|
|
}
|
|
l_buf = path->nodes[0];
|
|
l = &l_buf->leaf;
|
|
|
|
/* did the pushes work? */
|
|
if (leaf_free_space(l) >= sizeof(struct item) + data_size)
|
|
return 0;
|
|
|
|
if (!path->nodes[1]) {
|
|
ret = insert_new_root(root, path, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
slot = path->slots[0];
|
|
nritems = l->header.nritems;
|
|
mid = (nritems + 1)/ 2;
|
|
|
|
right_buffer = alloc_free_block(root);
|
|
BUG_ON(!right_buffer);
|
|
BUG_ON(mid == nritems);
|
|
right = &right_buffer->leaf;
|
|
memset(right, 0, sizeof(*right));
|
|
if (mid <= slot) {
|
|
/* FIXME, just alloc a new leaf here */
|
|
if (leaf_space_used(l, mid, nritems - mid) + space_needed >
|
|
LEAF_DATA_SIZE)
|
|
BUG();
|
|
} else {
|
|
/* FIXME, just alloc a new leaf here */
|
|
if (leaf_space_used(l, 0, mid + 1) + space_needed >
|
|
LEAF_DATA_SIZE)
|
|
BUG();
|
|
}
|
|
right->header.nritems = nritems - mid;
|
|
right->header.blocknr = right_buffer->blocknr;
|
|
right->header.flags = node_level(0);
|
|
right->header.parentid = root->node->node.header.parentid;
|
|
data_copy_size = l->items[mid].offset + l->items[mid].size -
|
|
leaf_data_end(l);
|
|
memcpy(right->items, l->items + mid,
|
|
(nritems - mid) * sizeof(struct item));
|
|
memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
|
|
l->data + leaf_data_end(l), data_copy_size);
|
|
rt_data_off = LEAF_DATA_SIZE -
|
|
(l->items[mid].offset + l->items[mid].size);
|
|
|
|
for (i = 0; i < right->header.nritems; i++)
|
|
right->items[i].offset += rt_data_off;
|
|
|
|
l->header.nritems = mid;
|
|
ret = 0;
|
|
wret = insert_ptr(root, path, &right->items[0].key,
|
|
right_buffer->blocknr, path->slots[1] + 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = write_tree_block(root, right_buffer);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = write_tree_block(root, l_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
BUG_ON(path->slots[0] != slot);
|
|
if (mid <= slot) {
|
|
tree_block_release(root, path->nodes[0]);
|
|
path->nodes[0] = right_buffer;
|
|
path->slots[0] -= mid;
|
|
path->slots[1] += 1;
|
|
} else
|
|
tree_block_release(root, right_buffer);
|
|
BUG_ON(path->slots[0] < 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key and some data, insert an item into the tree.
|
|
* This does all the path init required, making room in the tree if needed.
|
|
*/
|
|
int insert_item(struct ctree_root *root, struct key *key,
|
|
void *data, int data_size)
|
|
{
|
|
int ret = 0;
|
|
int wret;
|
|
int slot;
|
|
int slot_orig;
|
|
struct leaf *leaf;
|
|
struct tree_buffer *leaf_buf;
|
|
unsigned int nritems;
|
|
unsigned int data_end;
|
|
struct ctree_path path;
|
|
|
|
/* create a root if there isn't one */
|
|
if (!root->node)
|
|
BUG();
|
|
init_path(&path);
|
|
ret = search_slot(root, key, &path, data_size);
|
|
if (ret == 0) {
|
|
release_path(root, &path);
|
|
return -EEXIST;
|
|
}
|
|
if (ret < 0) {
|
|
release_path(root, &path);
|
|
return ret;
|
|
}
|
|
|
|
slot_orig = path.slots[0];
|
|
leaf_buf = path.nodes[0];
|
|
leaf = &leaf_buf->leaf;
|
|
|
|
nritems = leaf->header.nritems;
|
|
data_end = leaf_data_end(leaf);
|
|
|
|
if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
|
|
BUG();
|
|
|
|
slot = path.slots[0];
|
|
BUG_ON(slot < 0);
|
|
if (slot != nritems) {
|
|
int i;
|
|
unsigned int old_data = leaf->items[slot].offset +
|
|
leaf->items[slot].size;
|
|
|
|
/*
|
|
* item0..itemN ... dataN.offset..dataN.size .. data0.size
|
|
*/
|
|
/* first correct the data pointers */
|
|
for (i = slot; i < nritems; i++)
|
|
leaf->items[i].offset -= data_size;
|
|
|
|
/* shift the items */
|
|
memmove(leaf->items + slot + 1, leaf->items + slot,
|
|
(nritems - slot) * sizeof(struct item));
|
|
|
|
/* shift the data */
|
|
memmove(leaf->data + data_end - data_size, leaf->data +
|
|
data_end, old_data - data_end);
|
|
data_end = old_data;
|
|
}
|
|
/* copy the new data in */
|
|
memcpy(&leaf->items[slot].key, key, sizeof(struct key));
|
|
leaf->items[slot].offset = data_end - data_size;
|
|
leaf->items[slot].size = data_size;
|
|
memcpy(leaf->data + data_end - data_size, data, data_size);
|
|
leaf->header.nritems += 1;
|
|
|
|
ret = 0;
|
|
if (slot == 0)
|
|
ret = fixup_low_keys(root, &path, key, 1);
|
|
|
|
wret = write_tree_block(root, leaf_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
if (leaf_free_space(leaf) < 0)
|
|
BUG();
|
|
check_leaf(&path, 0);
|
|
release_path(root, &path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the pointer from a given node.
|
|
*
|
|
* If the delete empties a node, the node is removed from the tree,
|
|
* continuing all the way the root if required. The root is converted into
|
|
* a leaf if all the nodes are emptied.
|
|
*/
|
|
static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
|
|
int slot)
|
|
{
|
|
struct node *node;
|
|
struct tree_buffer *parent = path->nodes[level];
|
|
int nritems;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
node = &parent->node;
|
|
nritems = node->header.nritems;
|
|
|
|
if (slot != nritems -1) {
|
|
memmove(node->keys + slot, node->keys + slot + 1,
|
|
sizeof(struct key) * (nritems - slot - 1));
|
|
memmove(node->blockptrs + slot,
|
|
node->blockptrs + slot + 1,
|
|
sizeof(u64) * (nritems - slot - 1));
|
|
}
|
|
node->header.nritems--;
|
|
if (node->header.nritems == 0 && parent == root->node) {
|
|
BUG_ON(node_level(root->node->node.header.flags) != 1);
|
|
/* just turn the root into a leaf and break */
|
|
root->node->node.header.flags = node_level(0);
|
|
} else if (slot == 0) {
|
|
wret = fixup_low_keys(root, path, node->keys, level + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
wret = write_tree_block(root, parent);
|
|
if (wret)
|
|
ret = wret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the item at the leaf level in path. If that empties
|
|
* the leaf, remove it from the tree
|
|
*/
|
|
int del_item(struct ctree_root *root, struct ctree_path *path)
|
|
{
|
|
int slot;
|
|
struct leaf *leaf;
|
|
struct tree_buffer *leaf_buf;
|
|
int doff;
|
|
int dsize;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
leaf_buf = path->nodes[0];
|
|
leaf = &leaf_buf->leaf;
|
|
slot = path->slots[0];
|
|
doff = leaf->items[slot].offset;
|
|
dsize = leaf->items[slot].size;
|
|
|
|
if (slot != leaf->header.nritems - 1) {
|
|
int i;
|
|
int data_end = leaf_data_end(leaf);
|
|
memmove(leaf->data + data_end + dsize,
|
|
leaf->data + data_end,
|
|
doff - data_end);
|
|
for (i = slot + 1; i < leaf->header.nritems; i++)
|
|
leaf->items[i].offset += dsize;
|
|
memmove(leaf->items + slot, leaf->items + slot + 1,
|
|
sizeof(struct item) *
|
|
(leaf->header.nritems - slot - 1));
|
|
}
|
|
leaf->header.nritems -= 1;
|
|
/* delete the leaf if we've emptied it */
|
|
if (leaf->header.nritems == 0) {
|
|
if (leaf_buf == root->node) {
|
|
leaf->header.flags = node_level(0);
|
|
write_tree_block(root, leaf_buf);
|
|
} else {
|
|
wret = del_ptr(root, path, 1, path->slots[1]);
|
|
if (wret)
|
|
ret = wret;
|
|
wret = free_extent(root, leaf_buf->blocknr, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
} else {
|
|
int used = leaf_space_used(leaf, 0, leaf->header.nritems);
|
|
if (slot == 0) {
|
|
wret = fixup_low_keys(root, path,
|
|
&leaf->items[0].key, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
wret = write_tree_block(root, leaf_buf);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
/* delete the leaf if it is mostly empty */
|
|
if (used < LEAF_DATA_SIZE / 3) {
|
|
/* push_leaf_left fixes the path.
|
|
* make sure the path still points to our leaf
|
|
* for possible call to del_ptr below
|
|
*/
|
|
slot = path->slots[1];
|
|
leaf_buf->count++;
|
|
wret = push_leaf_left(root, path, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (leaf->header.nritems) {
|
|
wret = push_leaf_right(root, path, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
if (leaf->header.nritems == 0) {
|
|
u64 blocknr = leaf_buf->blocknr;
|
|
wret = del_ptr(root, path, 1, slot);
|
|
if (wret)
|
|
ret = wret;
|
|
tree_block_release(root, leaf_buf);
|
|
wret = free_extent(root, blocknr, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
tree_block_release(root, leaf_buf);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* walk up the tree as far as required to find the next leaf.
|
|
* returns 0 if it found something or 1 if there are no greater leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int next_leaf(struct ctree_root *root, struct ctree_path *path)
|
|
{
|
|
int slot;
|
|
int level = 1;
|
|
u64 blocknr;
|
|
struct tree_buffer *c;
|
|
struct tree_buffer *next = NULL;
|
|
|
|
while(level < MAX_LEVEL) {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
slot = path->slots[level] + 1;
|
|
c = path->nodes[level];
|
|
if (slot >= c->node.header.nritems) {
|
|
level++;
|
|
continue;
|
|
}
|
|
blocknr = c->node.blockptrs[slot];
|
|
if (next)
|
|
tree_block_release(root, next);
|
|
next = read_tree_block(root, blocknr);
|
|
break;
|
|
}
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
tree_block_release(root, c);
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
if (!level)
|
|
break;
|
|
next = read_tree_block(root, next->node.blockptrs[0]);
|
|
}
|
|
return 0;
|
|
}
|
|
|