tmp_suning_uos_patched/net/dsa/dsa2.c
Sebastian Reichel 33615367f3 net: dsa: Support internal phy on 'cpu' port
This adds support for enabling the internal PHY for a 'cpu' port.
It has been tested on GE B850v3,  B650v3 and B450v3, which have a
built-in MV88E6240 switch hardwired to a PCIe based network card.
On these machines the internal PHY of the i210 network card and
the Marvell switch are connected to each other and must be enabled
for properly using the switch. While the i210 PHY will be enabled
when the network interface is enabled, the switch's port is not
exposed as network interface. Additionally the mv88e6xxx driver
resets the chip during probe, so the PHY is disabled without this
patch.

Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.co.uk>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-23 19:22:38 -05:00

791 lines
15 KiB
C

/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include "dsa_priv.h"
static LIST_HEAD(dsa_tree_list);
static DEFINE_MUTEX(dsa2_mutex);
static const struct devlink_ops dsa_devlink_ops = {
};
static struct dsa_switch_tree *dsa_tree_find(int index)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_tree_list, list)
if (dst->index == index)
return dst;
return NULL;
}
static struct dsa_switch_tree *dsa_tree_alloc(int index)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->index = index;
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dsa_tree_list, &dst->list);
kref_init(&dst->refcount);
return dst;
}
static void dsa_tree_free(struct dsa_switch_tree *dst)
{
list_del(&dst->list);
kfree(dst);
}
static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
{
if (dst)
kref_get(&dst->refcount);
return dst;
}
static struct dsa_switch_tree *dsa_tree_touch(int index)
{
struct dsa_switch_tree *dst;
dst = dsa_tree_find(index);
if (dst)
return dsa_tree_get(dst);
else
return dsa_tree_alloc(index);
}
static void dsa_tree_release(struct kref *ref)
{
struct dsa_switch_tree *dst;
dst = container_of(ref, struct dsa_switch_tree, refcount);
dsa_tree_free(dst);
}
static void dsa_tree_put(struct dsa_switch_tree *dst)
{
if (dst)
kref_put(&dst->refcount, dsa_tree_release);
}
static bool dsa_port_is_dsa(struct dsa_port *port)
{
return port->type == DSA_PORT_TYPE_DSA;
}
static bool dsa_port_is_cpu(struct dsa_port *port)
{
return port->type == DSA_PORT_TYPE_CPU;
}
static bool dsa_port_is_user(struct dsa_port *dp)
{
return dp->type == DSA_PORT_TYPE_USER;
}
static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
struct device_node *dn)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dp->dn == dn)
return dp;
}
}
return NULL;
}
static bool dsa_port_setup_routing_table(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
struct device_node *dn = dp->dn;
struct of_phandle_iterator it;
struct dsa_port *link_dp;
int err;
of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
link_dp = dsa_tree_find_port_by_node(dst, it.node);
if (!link_dp) {
of_node_put(it.node);
return false;
}
ds->rtable[link_dp->ds->index] = dp->index;
}
return true;
}
static bool dsa_switch_setup_routing_table(struct dsa_switch *ds)
{
bool complete = true;
struct dsa_port *dp;
int i;
for (i = 0; i < DSA_MAX_SWITCHES; i++)
ds->rtable[i] = DSA_RTABLE_NONE;
for (i = 0; i < ds->num_ports; i++) {
dp = &ds->ports[i];
if (dsa_port_is_dsa(dp)) {
complete = dsa_port_setup_routing_table(dp);
if (!complete)
break;
}
}
return complete;
}
static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
bool complete = true;
int device;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
complete = dsa_switch_setup_routing_table(ds);
if (!complete)
break;
}
return complete;
}
static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dsa_port_is_cpu(dp))
return dp;
}
}
return NULL;
}
static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
/* DSA currently only supports a single CPU port */
dst->cpu_dp = dsa_tree_find_first_cpu(dst);
if (!dst->cpu_dp) {
pr_warn("Tree has no master device\n");
return -EINVAL;
}
/* Assign the default CPU port to all ports of the fabric */
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = dst->cpu_dp;
}
}
return 0;
}
static void dsa_tree_teardown_default_cpu(struct dsa_switch_tree *dst)
{
/* DSA currently only supports a single CPU port */
dst->cpu_dp = NULL;
}
static int dsa_port_setup(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
int err;
memset(&dp->devlink_port, 0, sizeof(dp->devlink_port));
err = devlink_port_register(ds->devlink, &dp->devlink_port, dp->index);
if (err)
return err;
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
case DSA_PORT_TYPE_DSA:
err = dsa_port_link_register_of(dp);
if (err) {
dev_err(ds->dev, "failed to setup link for port %d.%d\n",
ds->index, dp->index);
return err;
}
break;
case DSA_PORT_TYPE_USER:
err = dsa_slave_create(dp);
if (err)
dev_err(ds->dev, "failed to create slave for port %d.%d\n",
ds->index, dp->index);
else
devlink_port_type_eth_set(&dp->devlink_port, dp->slave);
break;
}
return 0;
}
static void dsa_port_teardown(struct dsa_port *dp)
{
devlink_port_unregister(&dp->devlink_port);
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
case DSA_PORT_TYPE_DSA:
dsa_port_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_USER:
if (dp->slave) {
dsa_slave_destroy(dp->slave);
dp->slave = NULL;
}
break;
}
}
static int dsa_switch_setup(struct dsa_switch *ds)
{
int err;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before ops->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask |= dsa_user_ports(ds);
/* Add the switch to devlink before calling setup, so that setup can
* add dpipe tables
*/
ds->devlink = devlink_alloc(&dsa_devlink_ops, 0);
if (!ds->devlink)
return -ENOMEM;
err = devlink_register(ds->devlink, ds->dev);
if (err)
return err;
err = ds->ops->setup(ds);
if (err < 0)
return err;
err = dsa_switch_register_notifier(ds);
if (err)
return err;
if (!ds->slave_mii_bus && ds->ops->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!ds->slave_mii_bus)
return -ENOMEM;
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
return err;
}
return 0;
}
static void dsa_switch_teardown(struct dsa_switch *ds)
{
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
dsa_switch_unregister_notifier(ds);
if (ds->devlink) {
devlink_unregister(ds->devlink);
devlink_free(ds->devlink);
ds->devlink = NULL;
}
}
static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
int err;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
err = dsa_switch_setup(ds);
if (err)
return err;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
err = dsa_port_setup(dp);
if (err)
return err;
}
}
return 0;
}
static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
{
struct dsa_switch *ds;
struct dsa_port *dp;
int device, port;
for (device = 0; device < DSA_MAX_SWITCHES; device++) {
ds = dst->ds[device];
if (!ds)
continue;
for (port = 0; port < ds->num_ports; port++) {
dp = &ds->ports[port];
dsa_port_teardown(dp);
}
dsa_switch_teardown(ds);
}
}
static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp = dst->cpu_dp;
struct net_device *master = cpu_dp->master;
/* DSA currently supports a single pair of CPU port and master device */
return dsa_master_setup(master, cpu_dp);
}
static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp = dst->cpu_dp;
struct net_device *master = cpu_dp->master;
return dsa_master_teardown(master);
}
static int dsa_tree_setup(struct dsa_switch_tree *dst)
{
bool complete;
int err;
if (dst->setup) {
pr_err("DSA: tree %d already setup! Disjoint trees?\n",
dst->index);
return -EEXIST;
}
complete = dsa_tree_setup_routing_table(dst);
if (!complete)
return 0;
err = dsa_tree_setup_default_cpu(dst);
if (err)
return err;
err = dsa_tree_setup_switches(dst);
if (err)
return err;
err = dsa_tree_setup_master(dst);
if (err)
return err;
dst->setup = true;
pr_info("DSA: tree %d setup\n", dst->index);
return 0;
}
static void dsa_tree_teardown(struct dsa_switch_tree *dst)
{
if (!dst->setup)
return;
dsa_tree_teardown_master(dst);
dsa_tree_teardown_switches(dst);
dsa_tree_teardown_default_cpu(dst);
pr_info("DSA: tree %d torn down\n", dst->index);
dst->setup = false;
}
static void dsa_tree_remove_switch(struct dsa_switch_tree *dst,
unsigned int index)
{
dsa_tree_teardown(dst);
dst->ds[index] = NULL;
dsa_tree_put(dst);
}
static int dsa_tree_add_switch(struct dsa_switch_tree *dst,
struct dsa_switch *ds)
{
unsigned int index = ds->index;
int err;
if (dst->ds[index])
return -EBUSY;
dsa_tree_get(dst);
dst->ds[index] = ds;
err = dsa_tree_setup(dst);
if (err)
dsa_tree_remove_switch(dst, index);
return err;
}
static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
{
if (!name)
name = "eth%d";
dp->type = DSA_PORT_TYPE_USER;
dp->name = name;
return 0;
}
static int dsa_port_parse_dsa(struct dsa_port *dp)
{
dp->type = DSA_PORT_TYPE_DSA;
return 0;
}
static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
const struct dsa_device_ops *tag_ops;
enum dsa_tag_protocol tag_protocol;
tag_protocol = ds->ops->get_tag_protocol(ds, dp->index);
tag_ops = dsa_resolve_tag_protocol(tag_protocol);
if (IS_ERR(tag_ops)) {
dev_warn(ds->dev, "No tagger for this switch\n");
return PTR_ERR(tag_ops);
}
dp->type = DSA_PORT_TYPE_CPU;
dp->rcv = tag_ops->rcv;
dp->tag_ops = tag_ops;
dp->master = master;
dp->dst = dst;
return 0;
}
static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
{
struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
const char *name = of_get_property(dn, "label", NULL);
bool link = of_property_read_bool(dn, "link");
dp->dn = dn;
if (ethernet) {
struct net_device *master;
master = of_find_net_device_by_node(ethernet);
if (!master)
return -EPROBE_DEFER;
return dsa_port_parse_cpu(dp, master);
}
if (link)
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
struct device_node *dn)
{
struct device_node *ports, *port;
struct dsa_port *dp;
u32 reg;
int err;
ports = of_get_child_by_name(dn, "ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return -EINVAL;
}
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
return err;
if (reg >= ds->num_ports)
return -EINVAL;
dp = &ds->ports[reg];
err = dsa_port_parse_of(dp, port);
if (err)
return err;
}
return 0;
}
static int dsa_switch_parse_member_of(struct dsa_switch *ds,
struct device_node *dn)
{
u32 m[2] = { 0, 0 };
int sz;
/* Don't error out if this optional property isn't found */
sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
if (sz < 0 && sz != -EINVAL)
return sz;
ds->index = m[1];
if (ds->index >= DSA_MAX_SWITCHES)
return -EINVAL;
ds->dst = dsa_tree_touch(m[0]);
if (!ds->dst)
return -ENOMEM;
return 0;
}
static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
{
int err;
err = dsa_switch_parse_member_of(ds, dn);
if (err)
return err;
return dsa_switch_parse_ports_of(ds, dn);
}
static int dsa_port_parse(struct dsa_port *dp, const char *name,
struct device *dev)
{
if (!strcmp(name, "cpu")) {
struct net_device *master;
master = dsa_dev_to_net_device(dev);
if (!master)
return -EPROBE_DEFER;
dev_put(master);
return dsa_port_parse_cpu(dp, master);
}
if (!strcmp(name, "dsa"))
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports(struct dsa_switch *ds,
struct dsa_chip_data *cd)
{
bool valid_name_found = false;
struct dsa_port *dp;
struct device *dev;
const char *name;
unsigned int i;
int err;
for (i = 0; i < DSA_MAX_PORTS; i++) {
name = cd->port_names[i];
dev = cd->netdev[i];
dp = &ds->ports[i];
if (!name)
continue;
err = dsa_port_parse(dp, name, dev);
if (err)
return err;
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS)
return -EINVAL;
return 0;
}
static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
{
ds->cd = cd;
/* We don't support interconnected switches nor multiple trees via
* platform data, so this is the unique switch of the tree.
*/
ds->index = 0;
ds->dst = dsa_tree_touch(0);
if (!ds->dst)
return -ENOMEM;
return dsa_switch_parse_ports(ds, cd);
}
static int dsa_switch_add(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
return dsa_tree_add_switch(dst, ds);
}
static int dsa_switch_probe(struct dsa_switch *ds)
{
struct dsa_chip_data *pdata = ds->dev->platform_data;
struct device_node *np = ds->dev->of_node;
int err;
if (np)
err = dsa_switch_parse_of(ds, np);
else if (pdata)
err = dsa_switch_parse(ds, pdata);
else
err = -ENODEV;
if (err)
return err;
return dsa_switch_add(ds);
}
struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n)
{
size_t size = sizeof(struct dsa_switch) + n * sizeof(struct dsa_port);
struct dsa_switch *ds;
int i;
ds = devm_kzalloc(dev, size, GFP_KERNEL);
if (!ds)
return NULL;
ds->dev = dev;
ds->num_ports = n;
for (i = 0; i < ds->num_ports; ++i) {
ds->ports[i].index = i;
ds->ports[i].ds = ds;
}
return ds;
}
EXPORT_SYMBOL_GPL(dsa_switch_alloc);
int dsa_register_switch(struct dsa_switch *ds)
{
int err;
mutex_lock(&dsa2_mutex);
err = dsa_switch_probe(ds);
dsa_tree_put(ds->dst);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void dsa_switch_remove(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
unsigned int index = ds->index;
dsa_tree_remove_switch(dst, index);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
dsa_switch_remove(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);