tmp_suning_uos_patched/drivers/net/caif/caif_hsi.c
sjur.brandeland@stericsson.com 39abbaef19 caif-hsi: Postpone init of HSI until open()
Do the initialization of the HSI interface when the
interface is opened, instead of upon registration.
When the interface is closed the HSI interface is
de-initialized, allowing other modules to use the
HSI interface.

Signed-off-by: Sjur Brændeland <sjur.brandeland@stericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-13 11:37:37 -04:00

1453 lines
34 KiB
C

/*
* Copyright (C) ST-Ericsson AB 2010
* Contact: Sjur Brendeland / sjur.brandeland@stericsson.com
* Author: Daniel Martensson / daniel.martensson@stericsson.com
* Dmitry.Tarnyagin / dmitry.tarnyagin@stericsson.com
* License terms: GNU General Public License (GPL) version 2.
*/
#define pr_fmt(fmt) KBUILD_MODNAME fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/if_arp.h>
#include <linux/timer.h>
#include <linux/rtnetlink.h>
#include <linux/pkt_sched.h>
#include <net/caif/caif_layer.h>
#include <net/caif/caif_hsi.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Daniel Martensson<daniel.martensson@stericsson.com>");
MODULE_DESCRIPTION("CAIF HSI driver");
/* Returns the number of padding bytes for alignment. */
#define PAD_POW2(x, pow) ((((x)&((pow)-1)) == 0) ? 0 :\
(((pow)-((x)&((pow)-1)))))
static int inactivity_timeout = 1000;
module_param(inactivity_timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(inactivity_timeout, "Inactivity timeout on HSI, ms.");
static int aggregation_timeout = 1;
module_param(aggregation_timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(aggregation_timeout, "Aggregation timeout on HSI, ms.");
/*
* HSI padding options.
* Warning: must be a base of 2 (& operation used) and can not be zero !
*/
static int hsi_head_align = 4;
module_param(hsi_head_align, int, S_IRUGO);
MODULE_PARM_DESC(hsi_head_align, "HSI head alignment.");
static int hsi_tail_align = 4;
module_param(hsi_tail_align, int, S_IRUGO);
MODULE_PARM_DESC(hsi_tail_align, "HSI tail alignment.");
/*
* HSI link layer flowcontrol thresholds.
* Warning: A high threshold value migth increase throughput but it will at
* the same time prevent channel prioritization and increase the risk of
* flooding the modem. The high threshold should be above the low.
*/
static int hsi_high_threshold = 100;
module_param(hsi_high_threshold, int, S_IRUGO);
MODULE_PARM_DESC(hsi_high_threshold, "HSI high threshold (FLOW OFF).");
static int hsi_low_threshold = 50;
module_param(hsi_low_threshold, int, S_IRUGO);
MODULE_PARM_DESC(hsi_low_threshold, "HSI high threshold (FLOW ON).");
#define ON 1
#define OFF 0
/*
* Threshold values for the HSI packet queue. Flowcontrol will be asserted
* when the number of packets exceeds HIGH_WATER_MARK. It will not be
* de-asserted before the number of packets drops below LOW_WATER_MARK.
*/
#define LOW_WATER_MARK hsi_low_threshold
#define HIGH_WATER_MARK hsi_high_threshold
static LIST_HEAD(cfhsi_list);
static spinlock_t cfhsi_list_lock;
static void cfhsi_inactivity_tout(unsigned long arg)
{
struct cfhsi *cfhsi = (struct cfhsi *)arg;
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
/* Schedule power down work queue. */
if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
queue_work(cfhsi->wq, &cfhsi->wake_down_work);
}
static void cfhsi_update_aggregation_stats(struct cfhsi *cfhsi,
const struct sk_buff *skb,
int direction)
{
struct caif_payload_info *info;
int hpad, tpad, len;
info = (struct caif_payload_info *)&skb->cb;
hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);
len = skb->len + hpad + tpad;
if (direction > 0)
cfhsi->aggregation_len += len;
else if (direction < 0)
cfhsi->aggregation_len -= len;
}
static bool cfhsi_can_send_aggregate(struct cfhsi *cfhsi)
{
int i;
if (cfhsi->aggregation_timeout < 0)
return true;
for (i = 0; i < CFHSI_PRIO_BEBK; ++i) {
if (cfhsi->qhead[i].qlen)
return true;
}
/* TODO: Use aggregation_len instead */
if (cfhsi->qhead[CFHSI_PRIO_BEBK].qlen >= CFHSI_MAX_PKTS)
return true;
return false;
}
static struct sk_buff *cfhsi_dequeue(struct cfhsi *cfhsi)
{
struct sk_buff *skb;
int i;
for (i = 0; i < CFHSI_PRIO_LAST; ++i) {
skb = skb_dequeue(&cfhsi->qhead[i]);
if (skb)
break;
}
return skb;
}
static int cfhsi_tx_queue_len(struct cfhsi *cfhsi)
{
int i, len = 0;
for (i = 0; i < CFHSI_PRIO_LAST; ++i)
len += skb_queue_len(&cfhsi->qhead[i]);
return len;
}
static void cfhsi_abort_tx(struct cfhsi *cfhsi)
{
struct sk_buff *skb;
for (;;) {
spin_lock_bh(&cfhsi->lock);
skb = cfhsi_dequeue(cfhsi);
if (!skb)
break;
cfhsi->ndev->stats.tx_errors++;
cfhsi->ndev->stats.tx_dropped++;
cfhsi_update_aggregation_stats(cfhsi, skb, -1);
spin_unlock_bh(&cfhsi->lock);
kfree_skb(skb);
}
cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
if (!test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
mod_timer(&cfhsi->inactivity_timer,
jiffies + cfhsi->inactivity_timeout);
spin_unlock_bh(&cfhsi->lock);
}
static int cfhsi_flush_fifo(struct cfhsi *cfhsi)
{
char buffer[32]; /* Any reasonable value */
size_t fifo_occupancy;
int ret;
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
do {
ret = cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
&fifo_occupancy);
if (ret) {
dev_warn(&cfhsi->ndev->dev,
"%s: can't get FIFO occupancy: %d.\n",
__func__, ret);
break;
} else if (!fifo_occupancy)
/* No more data, exitting normally */
break;
fifo_occupancy = min(sizeof(buffer), fifo_occupancy);
set_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
ret = cfhsi->dev->cfhsi_rx(buffer, fifo_occupancy,
cfhsi->dev);
if (ret) {
clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits);
dev_warn(&cfhsi->ndev->dev,
"%s: can't read data: %d.\n",
__func__, ret);
break;
}
ret = 5 * HZ;
ret = wait_event_interruptible_timeout(cfhsi->flush_fifo_wait,
!test_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits), ret);
if (ret < 0) {
dev_warn(&cfhsi->ndev->dev,
"%s: can't wait for flush complete: %d.\n",
__func__, ret);
break;
} else if (!ret) {
ret = -ETIMEDOUT;
dev_warn(&cfhsi->ndev->dev,
"%s: timeout waiting for flush complete.\n",
__func__);
break;
}
} while (1);
return ret;
}
static int cfhsi_tx_frm(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
{
int nfrms = 0;
int pld_len = 0;
struct sk_buff *skb;
u8 *pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
skb = cfhsi_dequeue(cfhsi);
if (!skb)
return 0;
/* Clear offset. */
desc->offset = 0;
/* Check if we can embed a CAIF frame. */
if (skb->len < CFHSI_MAX_EMB_FRM_SZ) {
struct caif_payload_info *info;
int hpad = 0;
int tpad = 0;
/* Calculate needed head alignment and tail alignment. */
info = (struct caif_payload_info *)&skb->cb;
hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);
/* Check if frame still fits with added alignment. */
if ((skb->len + hpad + tpad) <= CFHSI_MAX_EMB_FRM_SZ) {
u8 *pemb = desc->emb_frm;
desc->offset = CFHSI_DESC_SHORT_SZ;
*pemb = (u8)(hpad - 1);
pemb += hpad;
/* Update network statistics. */
spin_lock_bh(&cfhsi->lock);
cfhsi->ndev->stats.tx_packets++;
cfhsi->ndev->stats.tx_bytes += skb->len;
cfhsi_update_aggregation_stats(cfhsi, skb, -1);
spin_unlock_bh(&cfhsi->lock);
/* Copy in embedded CAIF frame. */
skb_copy_bits(skb, 0, pemb, skb->len);
/* Consume the SKB */
consume_skb(skb);
skb = NULL;
}
}
/* Create payload CAIF frames. */
pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
while (nfrms < CFHSI_MAX_PKTS) {
struct caif_payload_info *info;
int hpad = 0;
int tpad = 0;
if (!skb)
skb = cfhsi_dequeue(cfhsi);
if (!skb)
break;
/* Calculate needed head alignment and tail alignment. */
info = (struct caif_payload_info *)&skb->cb;
hpad = 1 + PAD_POW2((info->hdr_len + 1), hsi_head_align);
tpad = PAD_POW2((skb->len + hpad), hsi_tail_align);
/* Fill in CAIF frame length in descriptor. */
desc->cffrm_len[nfrms] = hpad + skb->len + tpad;
/* Fill head padding information. */
*pfrm = (u8)(hpad - 1);
pfrm += hpad;
/* Update network statistics. */
spin_lock_bh(&cfhsi->lock);
cfhsi->ndev->stats.tx_packets++;
cfhsi->ndev->stats.tx_bytes += skb->len;
cfhsi_update_aggregation_stats(cfhsi, skb, -1);
spin_unlock_bh(&cfhsi->lock);
/* Copy in CAIF frame. */
skb_copy_bits(skb, 0, pfrm, skb->len);
/* Update payload length. */
pld_len += desc->cffrm_len[nfrms];
/* Update frame pointer. */
pfrm += skb->len + tpad;
/* Consume the SKB */
consume_skb(skb);
skb = NULL;
/* Update number of frames. */
nfrms++;
}
/* Unused length fields should be zero-filled (according to SPEC). */
while (nfrms < CFHSI_MAX_PKTS) {
desc->cffrm_len[nfrms] = 0x0000;
nfrms++;
}
/* Check if we can piggy-back another descriptor. */
if (cfhsi_can_send_aggregate(cfhsi))
desc->header |= CFHSI_PIGGY_DESC;
else
desc->header &= ~CFHSI_PIGGY_DESC;
return CFHSI_DESC_SZ + pld_len;
}
static void cfhsi_start_tx(struct cfhsi *cfhsi)
{
struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
int len, res;
dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
do {
/* Create HSI frame. */
len = cfhsi_tx_frm(desc, cfhsi);
if (!len) {
spin_lock_bh(&cfhsi->lock);
if (unlikely(cfhsi_tx_queue_len(cfhsi))) {
spin_unlock_bh(&cfhsi->lock);
res = -EAGAIN;
continue;
}
cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
/* Start inactivity timer. */
mod_timer(&cfhsi->inactivity_timer,
jiffies + cfhsi->inactivity_timeout);
spin_unlock_bh(&cfhsi->lock);
break;
}
/* Set up new transfer. */
res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
if (WARN_ON(res < 0))
dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
__func__, res);
} while (res < 0);
}
static void cfhsi_tx_done(struct cfhsi *cfhsi)
{
dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
/*
* Send flow on if flow off has been previously signalled
* and number of packets is below low water mark.
*/
spin_lock_bh(&cfhsi->lock);
if (cfhsi->flow_off_sent &&
cfhsi_tx_queue_len(cfhsi) <= cfhsi->q_low_mark &&
cfhsi->cfdev.flowctrl) {
cfhsi->flow_off_sent = 0;
cfhsi->cfdev.flowctrl(cfhsi->ndev, ON);
}
if (cfhsi_can_send_aggregate(cfhsi)) {
spin_unlock_bh(&cfhsi->lock);
cfhsi_start_tx(cfhsi);
} else {
mod_timer(&cfhsi->aggregation_timer,
jiffies + cfhsi->aggregation_timeout);
spin_unlock_bh(&cfhsi->lock);
}
return;
}
static void cfhsi_tx_done_cb(struct cfhsi_drv *drv)
{
struct cfhsi *cfhsi;
cfhsi = container_of(drv, struct cfhsi, drv);
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
cfhsi_tx_done(cfhsi);
}
static int cfhsi_rx_desc(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
{
int xfer_sz = 0;
int nfrms = 0;
u16 *plen = NULL;
u8 *pfrm = NULL;
if ((desc->header & ~CFHSI_PIGGY_DESC) ||
(desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
dev_err(&cfhsi->ndev->dev, "%s: Invalid descriptor.\n",
__func__);
return -EPROTO;
}
/* Check for embedded CAIF frame. */
if (desc->offset) {
struct sk_buff *skb;
u8 *dst = NULL;
int len = 0;
pfrm = ((u8 *)desc) + desc->offset;
/* Remove offset padding. */
pfrm += *pfrm + 1;
/* Read length of CAIF frame (little endian). */
len = *pfrm;
len |= ((*(pfrm+1)) << 8) & 0xFF00;
len += 2; /* Add FCS fields. */
/* Sanity check length of CAIF frame. */
if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
dev_err(&cfhsi->ndev->dev, "%s: Invalid length.\n",
__func__);
return -EPROTO;
}
/* Allocate SKB (OK even in IRQ context). */
skb = alloc_skb(len + 1, GFP_ATOMIC);
if (!skb) {
dev_err(&cfhsi->ndev->dev, "%s: Out of memory !\n",
__func__);
return -ENOMEM;
}
caif_assert(skb != NULL);
dst = skb_put(skb, len);
memcpy(dst, pfrm, len);
skb->protocol = htons(ETH_P_CAIF);
skb_reset_mac_header(skb);
skb->dev = cfhsi->ndev;
/*
* We are called from a arch specific platform device.
* Unfortunately we don't know what context we're
* running in.
*/
if (in_interrupt())
netif_rx(skb);
else
netif_rx_ni(skb);
/* Update network statistics. */
cfhsi->ndev->stats.rx_packets++;
cfhsi->ndev->stats.rx_bytes += len;
}
/* Calculate transfer length. */
plen = desc->cffrm_len;
while (nfrms < CFHSI_MAX_PKTS && *plen) {
xfer_sz += *plen;
plen++;
nfrms++;
}
/* Check for piggy-backed descriptor. */
if (desc->header & CFHSI_PIGGY_DESC)
xfer_sz += CFHSI_DESC_SZ;
if ((xfer_sz % 4) || (xfer_sz > (CFHSI_BUF_SZ_RX - CFHSI_DESC_SZ))) {
dev_err(&cfhsi->ndev->dev,
"%s: Invalid payload len: %d, ignored.\n",
__func__, xfer_sz);
return -EPROTO;
}
return xfer_sz;
}
static int cfhsi_rx_desc_len(struct cfhsi_desc *desc)
{
int xfer_sz = 0;
int nfrms = 0;
u16 *plen;
if ((desc->header & ~CFHSI_PIGGY_DESC) ||
(desc->offset > CFHSI_MAX_EMB_FRM_SZ)) {
pr_err("Invalid descriptor. %x %x\n", desc->header,
desc->offset);
return -EPROTO;
}
/* Calculate transfer length. */
plen = desc->cffrm_len;
while (nfrms < CFHSI_MAX_PKTS && *plen) {
xfer_sz += *plen;
plen++;
nfrms++;
}
if (xfer_sz % 4) {
pr_err("Invalid payload len: %d, ignored.\n", xfer_sz);
return -EPROTO;
}
return xfer_sz;
}
static int cfhsi_rx_pld(struct cfhsi_desc *desc, struct cfhsi *cfhsi)
{
int rx_sz = 0;
int nfrms = 0;
u16 *plen = NULL;
u8 *pfrm = NULL;
/* Sanity check header and offset. */
if (WARN_ON((desc->header & ~CFHSI_PIGGY_DESC) ||
(desc->offset > CFHSI_MAX_EMB_FRM_SZ))) {
dev_err(&cfhsi->ndev->dev, "%s: Invalid descriptor.\n",
__func__);
return -EPROTO;
}
/* Set frame pointer to start of payload. */
pfrm = desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ;
plen = desc->cffrm_len;
/* Skip already processed frames. */
while (nfrms < cfhsi->rx_state.nfrms) {
pfrm += *plen;
rx_sz += *plen;
plen++;
nfrms++;
}
/* Parse payload. */
while (nfrms < CFHSI_MAX_PKTS && *plen) {
struct sk_buff *skb;
u8 *dst = NULL;
u8 *pcffrm = NULL;
int len = 0;
/* CAIF frame starts after head padding. */
pcffrm = pfrm + *pfrm + 1;
/* Read length of CAIF frame (little endian). */
len = *pcffrm;
len |= ((*(pcffrm + 1)) << 8) & 0xFF00;
len += 2; /* Add FCS fields. */
/* Sanity check length of CAIF frames. */
if (unlikely(len > CFHSI_MAX_CAIF_FRAME_SZ)) {
dev_err(&cfhsi->ndev->dev, "%s: Invalid length.\n",
__func__);
return -EPROTO;
}
/* Allocate SKB (OK even in IRQ context). */
skb = alloc_skb(len + 1, GFP_ATOMIC);
if (!skb) {
dev_err(&cfhsi->ndev->dev, "%s: Out of memory !\n",
__func__);
cfhsi->rx_state.nfrms = nfrms;
return -ENOMEM;
}
caif_assert(skb != NULL);
dst = skb_put(skb, len);
memcpy(dst, pcffrm, len);
skb->protocol = htons(ETH_P_CAIF);
skb_reset_mac_header(skb);
skb->dev = cfhsi->ndev;
/*
* We're called from a platform device,
* and don't know the context we're running in.
*/
if (in_interrupt())
netif_rx(skb);
else
netif_rx_ni(skb);
/* Update network statistics. */
cfhsi->ndev->stats.rx_packets++;
cfhsi->ndev->stats.rx_bytes += len;
pfrm += *plen;
rx_sz += *plen;
plen++;
nfrms++;
}
return rx_sz;
}
static void cfhsi_rx_done(struct cfhsi *cfhsi)
{
int res;
int desc_pld_len = 0, rx_len, rx_state;
struct cfhsi_desc *desc = NULL;
u8 *rx_ptr, *rx_buf;
struct cfhsi_desc *piggy_desc = NULL;
desc = (struct cfhsi_desc *)cfhsi->rx_buf;
dev_dbg(&cfhsi->ndev->dev, "%s\n", __func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
/* Update inactivity timer if pending. */
spin_lock_bh(&cfhsi->lock);
mod_timer_pending(&cfhsi->inactivity_timer,
jiffies + cfhsi->inactivity_timeout);
spin_unlock_bh(&cfhsi->lock);
if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
desc_pld_len = cfhsi_rx_desc_len(desc);
if (desc_pld_len < 0)
goto out_of_sync;
rx_buf = cfhsi->rx_buf;
rx_len = desc_pld_len;
if (desc_pld_len > 0 && (desc->header & CFHSI_PIGGY_DESC))
rx_len += CFHSI_DESC_SZ;
if (desc_pld_len == 0)
rx_buf = cfhsi->rx_flip_buf;
} else {
rx_buf = cfhsi->rx_flip_buf;
rx_len = CFHSI_DESC_SZ;
if (cfhsi->rx_state.pld_len > 0 &&
(desc->header & CFHSI_PIGGY_DESC)) {
piggy_desc = (struct cfhsi_desc *)
(desc->emb_frm + CFHSI_MAX_EMB_FRM_SZ +
cfhsi->rx_state.pld_len);
cfhsi->rx_state.piggy_desc = true;
/* Extract payload len from piggy-backed descriptor. */
desc_pld_len = cfhsi_rx_desc_len(piggy_desc);
if (desc_pld_len < 0)
goto out_of_sync;
if (desc_pld_len > 0)
rx_len = desc_pld_len;
if (desc_pld_len > 0 &&
(piggy_desc->header & CFHSI_PIGGY_DESC))
rx_len += CFHSI_DESC_SZ;
/*
* Copy needed information from the piggy-backed
* descriptor to the descriptor in the start.
*/
memcpy(rx_buf, (u8 *)piggy_desc,
CFHSI_DESC_SHORT_SZ);
/* Mark no embedded frame here */
piggy_desc->offset = 0;
if (desc_pld_len == -EPROTO)
goto out_of_sync;
}
}
if (desc_pld_len) {
rx_state = CFHSI_RX_STATE_PAYLOAD;
rx_ptr = rx_buf + CFHSI_DESC_SZ;
} else {
rx_state = CFHSI_RX_STATE_DESC;
rx_ptr = rx_buf;
rx_len = CFHSI_DESC_SZ;
}
/* Initiate next read */
if (test_bit(CFHSI_AWAKE, &cfhsi->bits)) {
/* Set up new transfer. */
dev_dbg(&cfhsi->ndev->dev, "%s: Start RX.\n",
__func__);
res = cfhsi->dev->cfhsi_rx(rx_ptr, rx_len,
cfhsi->dev);
if (WARN_ON(res < 0)) {
dev_err(&cfhsi->ndev->dev, "%s: RX error %d.\n",
__func__, res);
cfhsi->ndev->stats.rx_errors++;
cfhsi->ndev->stats.rx_dropped++;
}
}
if (cfhsi->rx_state.state == CFHSI_RX_STATE_DESC) {
/* Extract payload from descriptor */
if (cfhsi_rx_desc(desc, cfhsi) < 0)
goto out_of_sync;
} else {
/* Extract payload */
if (cfhsi_rx_pld(desc, cfhsi) < 0)
goto out_of_sync;
if (piggy_desc) {
/* Extract any payload in piggyback descriptor. */
if (cfhsi_rx_desc(piggy_desc, cfhsi) < 0)
goto out_of_sync;
}
}
/* Update state info */
memset(&cfhsi->rx_state, 0, sizeof(cfhsi->rx_state));
cfhsi->rx_state.state = rx_state;
cfhsi->rx_ptr = rx_ptr;
cfhsi->rx_len = rx_len;
cfhsi->rx_state.pld_len = desc_pld_len;
cfhsi->rx_state.piggy_desc = desc->header & CFHSI_PIGGY_DESC;
if (rx_buf != cfhsi->rx_buf)
swap(cfhsi->rx_buf, cfhsi->rx_flip_buf);
return;
out_of_sync:
dev_err(&cfhsi->ndev->dev, "%s: Out of sync.\n", __func__);
print_hex_dump_bytes("--> ", DUMP_PREFIX_NONE,
cfhsi->rx_buf, CFHSI_DESC_SZ);
schedule_work(&cfhsi->out_of_sync_work);
}
static void cfhsi_rx_slowpath(unsigned long arg)
{
struct cfhsi *cfhsi = (struct cfhsi *)arg;
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
cfhsi_rx_done(cfhsi);
}
static void cfhsi_rx_done_cb(struct cfhsi_drv *drv)
{
struct cfhsi *cfhsi;
cfhsi = container_of(drv, struct cfhsi, drv);
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
if (test_and_clear_bit(CFHSI_FLUSH_FIFO, &cfhsi->bits))
wake_up_interruptible(&cfhsi->flush_fifo_wait);
else
cfhsi_rx_done(cfhsi);
}
static void cfhsi_wake_up(struct work_struct *work)
{
struct cfhsi *cfhsi = NULL;
int res;
int len;
long ret;
cfhsi = container_of(work, struct cfhsi, wake_up_work);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
if (unlikely(test_bit(CFHSI_AWAKE, &cfhsi->bits))) {
/* It happenes when wakeup is requested by
* both ends at the same time. */
clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
return;
}
/* Activate wake line. */
cfhsi->dev->cfhsi_wake_up(cfhsi->dev);
dev_dbg(&cfhsi->ndev->dev, "%s: Start waiting.\n",
__func__);
/* Wait for acknowledge. */
ret = CFHSI_WAKE_TOUT;
ret = wait_event_interruptible_timeout(cfhsi->wake_up_wait,
test_and_clear_bit(CFHSI_WAKE_UP_ACK,
&cfhsi->bits), ret);
if (unlikely(ret < 0)) {
/* Interrupted by signal. */
dev_err(&cfhsi->ndev->dev, "%s: Signalled: %ld.\n",
__func__, ret);
clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
cfhsi->dev->cfhsi_wake_down(cfhsi->dev);
return;
} else if (!ret) {
bool ca_wake = false;
size_t fifo_occupancy = 0;
/* Wakeup timeout */
dev_dbg(&cfhsi->ndev->dev, "%s: Timeout.\n",
__func__);
/* Check FIFO to check if modem has sent something. */
WARN_ON(cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
&fifo_occupancy));
dev_dbg(&cfhsi->ndev->dev, "%s: Bytes in FIFO: %u.\n",
__func__, (unsigned) fifo_occupancy);
/* Check if we misssed the interrupt. */
WARN_ON(cfhsi->dev->cfhsi_get_peer_wake(cfhsi->dev,
&ca_wake));
if (ca_wake) {
dev_err(&cfhsi->ndev->dev, "%s: CA Wake missed !.\n",
__func__);
/* Clear the CFHSI_WAKE_UP_ACK bit to prevent race. */
clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
/* Continue execution. */
goto wake_ack;
}
clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
cfhsi->dev->cfhsi_wake_down(cfhsi->dev);
return;
}
wake_ack:
dev_dbg(&cfhsi->ndev->dev, "%s: Woken.\n",
__func__);
/* Clear power up bit. */
set_bit(CFHSI_AWAKE, &cfhsi->bits);
clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
/* Resume read operation. */
dev_dbg(&cfhsi->ndev->dev, "%s: Start RX.\n", __func__);
res = cfhsi->dev->cfhsi_rx(cfhsi->rx_ptr, cfhsi->rx_len, cfhsi->dev);
if (WARN_ON(res < 0))
dev_err(&cfhsi->ndev->dev, "%s: RX err %d.\n", __func__, res);
/* Clear power up acknowledment. */
clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
spin_lock_bh(&cfhsi->lock);
/* Resume transmit if queues are not empty. */
if (!cfhsi_tx_queue_len(cfhsi)) {
dev_dbg(&cfhsi->ndev->dev, "%s: Peer wake, start timer.\n",
__func__);
/* Start inactivity timer. */
mod_timer(&cfhsi->inactivity_timer,
jiffies + cfhsi->inactivity_timeout);
spin_unlock_bh(&cfhsi->lock);
return;
}
dev_dbg(&cfhsi->ndev->dev, "%s: Host wake.\n",
__func__);
spin_unlock_bh(&cfhsi->lock);
/* Create HSI frame. */
len = cfhsi_tx_frm((struct cfhsi_desc *)cfhsi->tx_buf, cfhsi);
if (likely(len > 0)) {
/* Set up new transfer. */
res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
if (WARN_ON(res < 0)) {
dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
__func__, res);
cfhsi_abort_tx(cfhsi);
}
} else {
dev_err(&cfhsi->ndev->dev,
"%s: Failed to create HSI frame: %d.\n",
__func__, len);
}
}
static void cfhsi_wake_down(struct work_struct *work)
{
long ret;
struct cfhsi *cfhsi = NULL;
size_t fifo_occupancy = 0;
int retry = CFHSI_WAKE_TOUT;
cfhsi = container_of(work, struct cfhsi, wake_down_work);
dev_dbg(&cfhsi->ndev->dev, "%s.\n", __func__);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
/* Deactivate wake line. */
cfhsi->dev->cfhsi_wake_down(cfhsi->dev);
/* Wait for acknowledge. */
ret = CFHSI_WAKE_TOUT;
ret = wait_event_interruptible_timeout(cfhsi->wake_down_wait,
test_and_clear_bit(CFHSI_WAKE_DOWN_ACK,
&cfhsi->bits), ret);
if (ret < 0) {
/* Interrupted by signal. */
dev_err(&cfhsi->ndev->dev, "%s: Signalled: %ld.\n",
__func__, ret);
return;
} else if (!ret) {
bool ca_wake = true;
/* Timeout */
dev_err(&cfhsi->ndev->dev, "%s: Timeout.\n", __func__);
/* Check if we misssed the interrupt. */
WARN_ON(cfhsi->dev->cfhsi_get_peer_wake(cfhsi->dev,
&ca_wake));
if (!ca_wake)
dev_err(&cfhsi->ndev->dev, "%s: CA Wake missed !.\n",
__func__);
}
/* Check FIFO occupancy. */
while (retry) {
WARN_ON(cfhsi->dev->cfhsi_fifo_occupancy(cfhsi->dev,
&fifo_occupancy));
if (!fifo_occupancy)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
retry--;
}
if (!retry)
dev_err(&cfhsi->ndev->dev, "%s: FIFO Timeout.\n", __func__);
/* Clear AWAKE condition. */
clear_bit(CFHSI_AWAKE, &cfhsi->bits);
/* Cancel pending RX requests. */
cfhsi->dev->cfhsi_rx_cancel(cfhsi->dev);
}
static void cfhsi_out_of_sync(struct work_struct *work)
{
struct cfhsi *cfhsi = NULL;
cfhsi = container_of(work, struct cfhsi, out_of_sync_work);
rtnl_lock();
dev_close(cfhsi->ndev);
rtnl_unlock();
}
static void cfhsi_wake_up_cb(struct cfhsi_drv *drv)
{
struct cfhsi *cfhsi = NULL;
cfhsi = container_of(drv, struct cfhsi, drv);
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
set_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
wake_up_interruptible(&cfhsi->wake_up_wait);
if (test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))
return;
/* Schedule wake up work queue if the peer initiates. */
if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
queue_work(cfhsi->wq, &cfhsi->wake_up_work);
}
static void cfhsi_wake_down_cb(struct cfhsi_drv *drv)
{
struct cfhsi *cfhsi = NULL;
cfhsi = container_of(drv, struct cfhsi, drv);
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
/* Initiating low power is only permitted by the host (us). */
set_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
wake_up_interruptible(&cfhsi->wake_down_wait);
}
static void cfhsi_aggregation_tout(unsigned long arg)
{
struct cfhsi *cfhsi = (struct cfhsi *)arg;
dev_dbg(&cfhsi->ndev->dev, "%s.\n",
__func__);
cfhsi_start_tx(cfhsi);
}
static int cfhsi_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct cfhsi *cfhsi = NULL;
int start_xfer = 0;
int timer_active;
int prio;
if (!dev)
return -EINVAL;
cfhsi = netdev_priv(dev);
switch (skb->priority) {
case TC_PRIO_BESTEFFORT:
case TC_PRIO_FILLER:
case TC_PRIO_BULK:
prio = CFHSI_PRIO_BEBK;
break;
case TC_PRIO_INTERACTIVE_BULK:
prio = CFHSI_PRIO_VI;
break;
case TC_PRIO_INTERACTIVE:
prio = CFHSI_PRIO_VO;
break;
case TC_PRIO_CONTROL:
default:
prio = CFHSI_PRIO_CTL;
break;
}
spin_lock_bh(&cfhsi->lock);
/* Update aggregation statistics */
cfhsi_update_aggregation_stats(cfhsi, skb, 1);
/* Queue the SKB */
skb_queue_tail(&cfhsi->qhead[prio], skb);
/* Sanity check; xmit should not be called after unregister_netdev */
if (WARN_ON(test_bit(CFHSI_SHUTDOWN, &cfhsi->bits))) {
spin_unlock_bh(&cfhsi->lock);
cfhsi_abort_tx(cfhsi);
return -EINVAL;
}
/* Send flow off if number of packets is above high water mark. */
if (!cfhsi->flow_off_sent &&
cfhsi_tx_queue_len(cfhsi) > cfhsi->q_high_mark &&
cfhsi->cfdev.flowctrl) {
cfhsi->flow_off_sent = 1;
cfhsi->cfdev.flowctrl(cfhsi->ndev, OFF);
}
if (cfhsi->tx_state == CFHSI_TX_STATE_IDLE) {
cfhsi->tx_state = CFHSI_TX_STATE_XFER;
start_xfer = 1;
}
if (!start_xfer) {
/* Send aggregate if it is possible */
bool aggregate_ready =
cfhsi_can_send_aggregate(cfhsi) &&
del_timer(&cfhsi->aggregation_timer) > 0;
spin_unlock_bh(&cfhsi->lock);
if (aggregate_ready)
cfhsi_start_tx(cfhsi);
return 0;
}
/* Delete inactivity timer if started. */
timer_active = del_timer_sync(&cfhsi->inactivity_timer);
spin_unlock_bh(&cfhsi->lock);
if (timer_active) {
struct cfhsi_desc *desc = (struct cfhsi_desc *)cfhsi->tx_buf;
int len;
int res;
/* Create HSI frame. */
len = cfhsi_tx_frm(desc, cfhsi);
WARN_ON(!len);
/* Set up new transfer. */
res = cfhsi->dev->cfhsi_tx(cfhsi->tx_buf, len, cfhsi->dev);
if (WARN_ON(res < 0)) {
dev_err(&cfhsi->ndev->dev, "%s: TX error %d.\n",
__func__, res);
cfhsi_abort_tx(cfhsi);
}
} else {
/* Schedule wake up work queue if the we initiate. */
if (!test_and_set_bit(CFHSI_WAKE_UP, &cfhsi->bits))
queue_work(cfhsi->wq, &cfhsi->wake_up_work);
}
return 0;
}
static const struct net_device_ops cfhsi_ops;
static void cfhsi_setup(struct net_device *dev)
{
int i;
struct cfhsi *cfhsi = netdev_priv(dev);
dev->features = 0;
dev->netdev_ops = &cfhsi_ops;
dev->type = ARPHRD_CAIF;
dev->flags = IFF_POINTOPOINT | IFF_NOARP;
dev->mtu = CFHSI_MAX_CAIF_FRAME_SZ;
dev->tx_queue_len = 0;
dev->destructor = free_netdev;
for (i = 0; i < CFHSI_PRIO_LAST; ++i)
skb_queue_head_init(&cfhsi->qhead[i]);
cfhsi->cfdev.link_select = CAIF_LINK_HIGH_BANDW;
cfhsi->cfdev.use_frag = false;
cfhsi->cfdev.use_stx = false;
cfhsi->cfdev.use_fcs = false;
cfhsi->ndev = dev;
}
int cfhsi_probe(struct platform_device *pdev)
{
struct cfhsi *cfhsi = NULL;
struct net_device *ndev;
int res;
ndev = alloc_netdev(sizeof(struct cfhsi), "cfhsi%d", cfhsi_setup);
if (!ndev)
return -ENODEV;
cfhsi = netdev_priv(ndev);
cfhsi->ndev = ndev;
cfhsi->pdev = pdev;
/* Assign the HSI device. */
cfhsi->dev = pdev->dev.platform_data;
/* Assign the driver to this HSI device. */
cfhsi->dev->drv = &cfhsi->drv;
/* Register network device. */
res = register_netdev(ndev);
if (res) {
dev_err(&ndev->dev, "%s: Registration error: %d.\n",
__func__, res);
free_netdev(ndev);
}
/* Add CAIF HSI device to list. */
spin_lock(&cfhsi_list_lock);
list_add_tail(&cfhsi->list, &cfhsi_list);
spin_unlock(&cfhsi_list_lock);
return res;
}
static int cfhsi_open(struct net_device *ndev)
{
struct cfhsi *cfhsi = netdev_priv(ndev);
int res;
clear_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
/* Initialize state vaiables. */
cfhsi->tx_state = CFHSI_TX_STATE_IDLE;
cfhsi->rx_state.state = CFHSI_RX_STATE_DESC;
/* Set flow info */
cfhsi->flow_off_sent = 0;
cfhsi->q_low_mark = LOW_WATER_MARK;
cfhsi->q_high_mark = HIGH_WATER_MARK;
/*
* Allocate a TX buffer with the size of a HSI packet descriptors
* and the necessary room for CAIF payload frames.
*/
cfhsi->tx_buf = kzalloc(CFHSI_BUF_SZ_TX, GFP_KERNEL);
if (!cfhsi->tx_buf) {
res = -ENODEV;
goto err_alloc_tx;
}
/*
* Allocate a RX buffer with the size of two HSI packet descriptors and
* the necessary room for CAIF payload frames.
*/
cfhsi->rx_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
if (!cfhsi->rx_buf) {
res = -ENODEV;
goto err_alloc_rx;
}
cfhsi->rx_flip_buf = kzalloc(CFHSI_BUF_SZ_RX, GFP_KERNEL);
if (!cfhsi->rx_flip_buf) {
res = -ENODEV;
goto err_alloc_rx_flip;
}
/* Pre-calculate inactivity timeout. */
if (inactivity_timeout != -1) {
cfhsi->inactivity_timeout =
inactivity_timeout * HZ / 1000;
if (!cfhsi->inactivity_timeout)
cfhsi->inactivity_timeout = 1;
else if (cfhsi->inactivity_timeout > NEXT_TIMER_MAX_DELTA)
cfhsi->inactivity_timeout = NEXT_TIMER_MAX_DELTA;
} else {
cfhsi->inactivity_timeout = NEXT_TIMER_MAX_DELTA;
}
/* Initialize aggregation timeout */
cfhsi->aggregation_timeout = aggregation_timeout;
/* Initialize recieve vaiables. */
cfhsi->rx_ptr = cfhsi->rx_buf;
cfhsi->rx_len = CFHSI_DESC_SZ;
/* Initialize spin locks. */
spin_lock_init(&cfhsi->lock);
/* Set up the driver. */
cfhsi->drv.tx_done_cb = cfhsi_tx_done_cb;
cfhsi->drv.rx_done_cb = cfhsi_rx_done_cb;
cfhsi->drv.wake_up_cb = cfhsi_wake_up_cb;
cfhsi->drv.wake_down_cb = cfhsi_wake_down_cb;
/* Initialize the work queues. */
INIT_WORK(&cfhsi->wake_up_work, cfhsi_wake_up);
INIT_WORK(&cfhsi->wake_down_work, cfhsi_wake_down);
INIT_WORK(&cfhsi->out_of_sync_work, cfhsi_out_of_sync);
/* Clear all bit fields. */
clear_bit(CFHSI_WAKE_UP_ACK, &cfhsi->bits);
clear_bit(CFHSI_WAKE_DOWN_ACK, &cfhsi->bits);
clear_bit(CFHSI_WAKE_UP, &cfhsi->bits);
clear_bit(CFHSI_AWAKE, &cfhsi->bits);
/* Create work thread. */
cfhsi->wq = create_singlethread_workqueue(cfhsi->pdev->name);
if (!cfhsi->wq) {
dev_err(&cfhsi->ndev->dev, "%s: Failed to create work queue.\n",
__func__);
res = -ENODEV;
goto err_create_wq;
}
/* Initialize wait queues. */
init_waitqueue_head(&cfhsi->wake_up_wait);
init_waitqueue_head(&cfhsi->wake_down_wait);
init_waitqueue_head(&cfhsi->flush_fifo_wait);
/* Setup the inactivity timer. */
init_timer(&cfhsi->inactivity_timer);
cfhsi->inactivity_timer.data = (unsigned long)cfhsi;
cfhsi->inactivity_timer.function = cfhsi_inactivity_tout;
/* Setup the slowpath RX timer. */
init_timer(&cfhsi->rx_slowpath_timer);
cfhsi->rx_slowpath_timer.data = (unsigned long)cfhsi;
cfhsi->rx_slowpath_timer.function = cfhsi_rx_slowpath;
/* Setup the aggregation timer. */
init_timer(&cfhsi->aggregation_timer);
cfhsi->aggregation_timer.data = (unsigned long)cfhsi;
cfhsi->aggregation_timer.function = cfhsi_aggregation_tout;
/* Activate HSI interface. */
res = cfhsi->dev->cfhsi_up(cfhsi->dev);
if (res) {
dev_err(&cfhsi->ndev->dev,
"%s: can't activate HSI interface: %d.\n",
__func__, res);
goto err_activate;
}
/* Flush FIFO */
res = cfhsi_flush_fifo(cfhsi);
if (res) {
dev_err(&cfhsi->ndev->dev, "%s: Can't flush FIFO: %d.\n",
__func__, res);
goto err_net_reg;
}
return res;
err_net_reg:
cfhsi->dev->cfhsi_down(cfhsi->dev);
err_activate:
destroy_workqueue(cfhsi->wq);
err_create_wq:
kfree(cfhsi->rx_flip_buf);
err_alloc_rx_flip:
kfree(cfhsi->rx_buf);
err_alloc_rx:
kfree(cfhsi->tx_buf);
err_alloc_tx:
return res;
}
static int cfhsi_close(struct net_device *ndev)
{
struct cfhsi *cfhsi = netdev_priv(ndev);
u8 *tx_buf, *rx_buf, *flip_buf;
/* going to shutdown driver */
set_bit(CFHSI_SHUTDOWN, &cfhsi->bits);
/* Flush workqueue */
flush_workqueue(cfhsi->wq);
/* Delete timers if pending */
del_timer_sync(&cfhsi->inactivity_timer);
del_timer_sync(&cfhsi->rx_slowpath_timer);
del_timer_sync(&cfhsi->aggregation_timer);
/* Cancel pending RX request (if any) */
cfhsi->dev->cfhsi_rx_cancel(cfhsi->dev);
/* Destroy workqueue */
destroy_workqueue(cfhsi->wq);
/* Store bufferes: will be freed later. */
tx_buf = cfhsi->tx_buf;
rx_buf = cfhsi->rx_buf;
flip_buf = cfhsi->rx_flip_buf;
/* Flush transmit queues. */
cfhsi_abort_tx(cfhsi);
/* Deactivate interface */
cfhsi->dev->cfhsi_down(cfhsi->dev);
/* Free buffers. */
kfree(tx_buf);
kfree(rx_buf);
kfree(flip_buf);
return 0;
}
static const struct net_device_ops cfhsi_ops = {
.ndo_open = cfhsi_open,
.ndo_stop = cfhsi_close,
.ndo_start_xmit = cfhsi_xmit
};
int cfhsi_remove(struct platform_device *pdev)
{
struct list_head *list_node;
struct list_head *n;
struct cfhsi *cfhsi = NULL;
struct cfhsi_dev *dev;
dev = (struct cfhsi_dev *)pdev->dev.platform_data;
spin_lock(&cfhsi_list_lock);
list_for_each_safe(list_node, n, &cfhsi_list) {
cfhsi = list_entry(list_node, struct cfhsi, list);
/* Find the corresponding device. */
if (cfhsi->dev == dev) {
/* Remove from list. */
list_del(list_node);
spin_unlock(&cfhsi_list_lock);
return 0;
}
}
spin_unlock(&cfhsi_list_lock);
return -ENODEV;
}
struct platform_driver cfhsi_plat_drv = {
.probe = cfhsi_probe,
.remove = cfhsi_remove,
.driver = {
.name = "cfhsi",
.owner = THIS_MODULE,
},
};
static void __exit cfhsi_exit_module(void)
{
struct list_head *list_node;
struct list_head *n;
struct cfhsi *cfhsi = NULL;
spin_lock(&cfhsi_list_lock);
list_for_each_safe(list_node, n, &cfhsi_list) {
cfhsi = list_entry(list_node, struct cfhsi, list);
/* Remove from list. */
list_del(list_node);
spin_unlock(&cfhsi_list_lock);
unregister_netdevice(cfhsi->ndev);
spin_lock(&cfhsi_list_lock);
}
spin_unlock(&cfhsi_list_lock);
/* Unregister platform driver. */
platform_driver_unregister(&cfhsi_plat_drv);
}
static int __init cfhsi_init_module(void)
{
int result;
/* Initialize spin lock. */
spin_lock_init(&cfhsi_list_lock);
/* Register platform driver. */
result = platform_driver_register(&cfhsi_plat_drv);
if (result) {
printk(KERN_ERR "Could not register platform HSI driver: %d.\n",
result);
goto err_dev_register;
}
err_dev_register:
return result;
}
module_init(cfhsi_init_module);
module_exit(cfhsi_exit_module);