tmp_suning_uos_patched/mm/gup.c
John Hubbard fc1d8e7cca mm: introduce put_user_page*(), placeholder versions
A discussion of the overall problem is below.

As mentioned in patch 0001, the steps are to fix the problem are:

1) Provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

Overview
========

Some kernel components (file systems, device drivers) need to access
memory that is specified via process virtual address.  For a long time,
the API to achieve that was get_user_pages ("GUP") and its variations.
However, GUP has critical limitations that have been overlooked; in
particular, GUP does not interact correctly with filesystems in all
situations.  That means that file-backed memory + GUP is a recipe for
potential problems, some of which have already occurred in the field.

GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem
code to get the struct page behind a virtual address and to let storage
hardware perform a direct copy to or from that page.  This is a
short-lived access pattern, and as such, the window for a concurrent
writeback of GUP'd page was small enough that there were not (we think)
any reported problems.  Also, userspace was expected to understand and
accept that Direct IO was not synchronized with memory-mapped access to
that data, nor with any process address space changes such as munmap(),
mremap(), etc.

Over the years, more GUP uses have appeared (virtualization, device
drivers, RDMA) that can keep the pages they get via GUP for a long period
of time (seconds, minutes, hours, days, ...).  This long-term pinning
makes an underlying design problem more obvious.

In fact, there are a number of key problems inherent to GUP:

Interactions with file systems
==============================

File systems expect to be able to write back data, both to reclaim pages,
and for data integrity.  Allowing other hardware (NICs, GPUs, etc) to gain
write access to the file memory pages means that such hardware can dirty
the pages, without the filesystem being aware.  This can, in some cases
(depending on filesystem, filesystem options, block device, block device
options, and other variables), lead to data corruption, and also to kernel
bugs of the form:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on every
    write access to a clean file backed page, not just the first one.
    How long the GUP reference lasts is irrelevant, if the page is clean
    and you need to dirty it, you must call ->page_mkwrite before it is
    marked writeable and dirtied. Every. Time."

This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.

Long term GUP
=============

Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a
writeable mapping is created), and the pages are file-backed.  That can
lead to filesystem corruption.  What happens is that when a file-backed
page is being written back, it is first mapped read-only in all of the CPU
page tables; the file system then assumes that nobody can write to the
page, and that the page content is therefore stable.  Unfortunately, the
GUP callers generally do not monitor changes to the CPU pages tables; they
instead assume that the following pattern is safe (it's not):

    get_user_pages()

    Hardware can keep a reference to those pages for a very long time,
    and write to it at any time.  Because "hardware" here means "devices
    that are not a CPU", this activity occurs without any interaction with
    the kernel's file system code.

    for each page
        set_page_dirty
        put_page()

In fact, the GUP documentation even recommends that pattern.

Anyway, the file system assumes that the page is stable (nothing is
writing to the page), and that is a problem: stable page content is
necessary for many filesystem actions during writeback, such as checksum,
encryption, RAID striping, etc.  Furthermore, filesystem features like COW
(copy on write) or snapshot also rely on being able to use a new page for
as memory for that memory range inside the file.

Corruption during write back is clearly possible here.  To solve that, one
idea is to identify pages that have active GUP, so that we can use a
bounce page to write stable data to the filesystem.  The filesystem would
work on the bounce page, while any of the active GUP might write to the
original page.  This would avoid the stable page violation problem, but
note that it is only part of the overall solution, because other problems
remain.

Other filesystem features that need to replace the page with a new one can
be inhibited for pages that are GUP-pinned.  This will, however, alter and
limit some of those filesystem features.  The only fix for that would be
to require GUP users to monitor and respond to CPU page table updates.
Subsystems such as ODP and HMM do this, for example.  This aspect of the
problem is still under discussion.

Direct IO
=========

Direct IO can cause corruption, if userspace does Direct-IO that writes to
a range of virtual addresses that are mmap'd to a file.  The pages written
to are file-backed pages that can be under write back, while the Direct IO
is taking place.  Here, Direct IO races with a write back: it calls GUP
before page_mkclean() has replaced the CPU pte with a read-only entry.
The race window is pretty small, which is probably why years have gone by
before we noticed this problem: Direct IO is generally very quick, and
tends to finish up before the filesystem gets around to do anything with
the page contents.  However, it's still a real problem.  The solution is
to never let GUP return pages that are under write back, but instead,
force GUP to take a write fault on those pages.  That way, GUP will
properly synchronize with the active write back.  This does not change the
required GUP behavior, it just avoids that race.

Details
=======

Introduces put_user_page(), which simply calls put_page().  This provides
a way to update all get_user_pages*() callers, so that they call
put_user_page(), instead of put_page().

Also introduces put_user_pages(), and a few dirty/locked variations, as a
replacement for release_pages(), and also as a replacement for open-coded
loops that release multiple pages.  These may be used for subsequent
performance improvements, via batching of pages to be released.

This is the first step of fixing a problem (also described in [1] and [2])
with interactions between get_user_pages ("gup") and filesystems.

Problem description: let's start with a bug report.  Below, is what
happens sometimes, under memory pressure, when a driver pins some pages
via gup, and then marks those pages dirty, and releases them.  Note that
the gup documentation actually recommends that pattern.  The problem is
that the filesystem may do a writeback while the pages were gup-pinned,
and then the filesystem believes that the pages are clean.  So, when the
driver later marks the pages as dirty, that conflicts with the
filesystem's page tracking and results in a BUG(), like this one that I
experienced:

    kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899!
    backtrace:
        ext4_writepage
        __writepage
        write_cache_pages
        ext4_writepages
        do_writepages
        __writeback_single_inode
        writeback_sb_inodes
        __writeback_inodes_wb
        wb_writeback
        wb_workfn
        process_one_work
        worker_thread
        kthread
        ret_from_fork

...which is due to the file system asserting that there are still buffer
heads attached:

        ({                                                      \
                BUG_ON(!PagePrivate(page));                     \
                ((struct buffer_head *)page_private(page));     \
        })

Dave Chinner's description of this is very clear:

    "The fundamental issue is that ->page_mkwrite must be called on
    every write access to a clean file backed page, not just the first
    one.  How long the GUP reference lasts is irrelevant, if the page is
    clean and you need to dirty it, you must call ->page_mkwrite before it
    is marked writeable and dirtied.  Every.  Time."

This is just one symptom of the larger design problem: real filesystems
that actually write to a backing device, do not actually support
get_user_pages() being called on their pages, and letting hardware write
directly to those pages--even though that pattern has been going on since
about 2005 or so.

The steps are to fix it are:

1) (This patch): provide put_user_page*() routines, intended to be used
   for releasing pages that were pinned via get_user_pages*().

2) Convert all of the call sites for get_user_pages*(), to
   invoke put_user_page*(), instead of put_page(). This involves dozens of
   call sites, and will take some time.

3) After (2) is complete, use get_user_pages*() and put_user_page*() to
   implement tracking of these pages. This tracking will be separate from
   the existing struct page refcounting.

4) Use the tracking and identification of these pages, to implement
   special handling (especially in writeback paths) when the pages are
   backed by a filesystem.

[1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()"
[2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()"

Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>		[docs]
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00

2259 lines
61 KiB
C

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/sched/signal.h>
#include <linux/rwsem.h>
#include <linux/hugetlb.h>
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include "internal.h"
struct follow_page_context {
struct dev_pagemap *pgmap;
unsigned int page_mask;
};
typedef int (*set_dirty_func_t)(struct page *page);
static void __put_user_pages_dirty(struct page **pages,
unsigned long npages,
set_dirty_func_t sdf)
{
unsigned long index;
for (index = 0; index < npages; index++) {
struct page *page = compound_head(pages[index]);
/*
* Checking PageDirty at this point may race with
* clear_page_dirty_for_io(), but that's OK. Two key cases:
*
* 1) This code sees the page as already dirty, so it skips
* the call to sdf(). That could happen because
* clear_page_dirty_for_io() called page_mkclean(),
* followed by set_page_dirty(). However, now the page is
* going to get written back, which meets the original
* intention of setting it dirty, so all is well:
* clear_page_dirty_for_io() goes on to call
* TestClearPageDirty(), and write the page back.
*
* 2) This code sees the page as clean, so it calls sdf().
* The page stays dirty, despite being written back, so it
* gets written back again in the next writeback cycle.
* This is harmless.
*/
if (!PageDirty(page))
sdf(page);
put_user_page(page);
}
}
/**
* put_user_pages_dirty() - release and dirty an array of gup-pinned pages
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
* variants called on that page.
*
* For each page in the @pages array, make that page (or its head page, if a
* compound page) dirty, if it was previously listed as clean. Then, release
* the page using put_user_page().
*
* Please see the put_user_page() documentation for details.
*
* set_page_dirty(), which does not lock the page, is used here.
* Therefore, it is the caller's responsibility to ensure that this is
* safe. If not, then put_user_pages_dirty_lock() should be called instead.
*
*/
void put_user_pages_dirty(struct page **pages, unsigned long npages)
{
__put_user_pages_dirty(pages, npages, set_page_dirty);
}
EXPORT_SYMBOL(put_user_pages_dirty);
/**
* put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* For each page in the @pages array, make that page (or its head page, if a
* compound page) dirty, if it was previously listed as clean. Then, release
* the page using put_user_page().
*
* Please see the put_user_page() documentation for details.
*
* This is just like put_user_pages_dirty(), except that it invokes
* set_page_dirty_lock(), instead of set_page_dirty().
*
*/
void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
{
__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
}
EXPORT_SYMBOL(put_user_pages_dirty_lock);
/**
* put_user_pages() - release an array of gup-pinned pages.
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* For each page in the @pages array, release the page using put_user_page().
*
* Please see the put_user_page() documentation for details.
*/
void put_user_pages(struct page **pages, unsigned long npages)
{
unsigned long index;
/*
* TODO: this can be optimized for huge pages: if a series of pages is
* physically contiguous and part of the same compound page, then a
* single operation to the head page should suffice.
*/
for (index = 0; index < npages; index++)
put_user_page(pages[index]);
}
EXPORT_SYMBOL(put_user_pages);
static struct page *no_page_table(struct vm_area_struct *vma,
unsigned int flags)
{
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate unnecessary pages or
* page tables. Return error instead of NULL to skip handle_mm_fault,
* then get_dump_page() will return NULL to leave a hole in the dump.
* But we can only make this optimization where a hole would surely
* be zero-filled if handle_mm_fault() actually did handle it.
*/
if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
return ERR_PTR(-EFAULT);
return NULL;
}
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
pte_t *pte, unsigned int flags)
{
/* No page to get reference */
if (flags & FOLL_GET)
return -EFAULT;
if (flags & FOLL_TOUCH) {
pte_t entry = *pte;
if (flags & FOLL_WRITE)
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
if (!pte_same(*pte, entry)) {
set_pte_at(vma->vm_mm, address, pte, entry);
update_mmu_cache(vma, address, pte);
}
}
/* Proper page table entry exists, but no corresponding struct page */
return -EEXIST;
}
/*
* FOLL_FORCE can write to even unwritable pte's, but only
* after we've gone through a COW cycle and they are dirty.
*/
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
return pte_write(pte) ||
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}
static struct page *follow_page_pte(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned int flags,
struct dev_pagemap **pgmap)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
spinlock_t *ptl;
pte_t *ptep, pte;
retry:
if (unlikely(pmd_bad(*pmd)))
return no_page_table(vma, flags);
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!pte_present(pte)) {
swp_entry_t entry;
/*
* KSM's break_ksm() relies upon recognizing a ksm page
* even while it is being migrated, so for that case we
* need migration_entry_wait().
*/
if (likely(!(flags & FOLL_MIGRATION)))
goto no_page;
if (pte_none(pte))
goto no_page;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto no_page;
pte_unmap_unlock(ptep, ptl);
migration_entry_wait(mm, pmd, address);
goto retry;
}
if ((flags & FOLL_NUMA) && pte_protnone(pte))
goto no_page;
if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
pte_unmap_unlock(ptep, ptl);
return NULL;
}
page = vm_normal_page(vma, address, pte);
if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
/*
* Only return device mapping pages in the FOLL_GET case since
* they are only valid while holding the pgmap reference.
*/
*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
if (*pgmap)
page = pte_page(pte);
else
goto no_page;
} else if (unlikely(!page)) {
if (flags & FOLL_DUMP) {
/* Avoid special (like zero) pages in core dumps */
page = ERR_PTR(-EFAULT);
goto out;
}
if (is_zero_pfn(pte_pfn(pte))) {
page = pte_page(pte);
} else {
int ret;
ret = follow_pfn_pte(vma, address, ptep, flags);
page = ERR_PTR(ret);
goto out;
}
}
if (flags & FOLL_SPLIT && PageTransCompound(page)) {
int ret;
get_page(page);
pte_unmap_unlock(ptep, ptl);
lock_page(page);
ret = split_huge_page(page);
unlock_page(page);
put_page(page);
if (ret)
return ERR_PTR(ret);
goto retry;
}
if (flags & FOLL_GET) {
if (unlikely(!try_get_page(page))) {
page = ERR_PTR(-ENOMEM);
goto out;
}
}
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
/*
* pte_mkyoung() would be more correct here, but atomic care
* is needed to avoid losing the dirty bit: it is easier to use
* mark_page_accessed().
*/
mark_page_accessed(page);
}
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
/* Do not mlock pte-mapped THP */
if (PageTransCompound(page))
goto out;
/*
* The preliminary mapping check is mainly to avoid the
* pointless overhead of lock_page on the ZERO_PAGE
* which might bounce very badly if there is contention.
*
* If the page is already locked, we don't need to
* handle it now - vmscan will handle it later if and
* when it attempts to reclaim the page.
*/
if (page->mapping && trylock_page(page)) {
lru_add_drain(); /* push cached pages to LRU */
/*
* Because we lock page here, and migration is
* blocked by the pte's page reference, and we
* know the page is still mapped, we don't even
* need to check for file-cache page truncation.
*/
mlock_vma_page(page);
unlock_page(page);
}
}
out:
pte_unmap_unlock(ptep, ptl);
return page;
no_page:
pte_unmap_unlock(ptep, ptl);
if (!pte_none(pte))
return NULL;
return no_page_table(vma, flags);
}
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
unsigned int flags,
struct follow_page_context *ctx)
{
pmd_t *pmd, pmdval;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pmd = pmd_offset(pudp, address);
/*
* The READ_ONCE() will stabilize the pmdval in a register or
* on the stack so that it will stop changing under the code.
*/
pmdval = READ_ONCE(*pmd);
if (pmd_none(pmdval))
return no_page_table(vma, flags);
if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
page = follow_huge_pmd(mm, address, pmd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
page = follow_huge_pd(vma, address,
__hugepd(pmd_val(pmdval)), flags,
PMD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
retry:
if (!pmd_present(pmdval)) {
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(pmdval));
if (is_pmd_migration_entry(pmdval))
pmd_migration_entry_wait(mm, pmd);
pmdval = READ_ONCE(*pmd);
/*
* MADV_DONTNEED may convert the pmd to null because
* mmap_sem is held in read mode
*/
if (pmd_none(pmdval))
return no_page_table(vma, flags);
goto retry;
}
if (pmd_devmap(pmdval)) {
ptl = pmd_lock(mm, pmd);
page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (likely(!pmd_trans_huge(pmdval)))
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
return no_page_table(vma, flags);
retry_locked:
ptl = pmd_lock(mm, pmd);
if (unlikely(pmd_none(*pmd))) {
spin_unlock(ptl);
return no_page_table(vma, flags);
}
if (unlikely(!pmd_present(*pmd))) {
spin_unlock(ptl);
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
pmd_migration_entry_wait(mm, pmd);
goto retry_locked;
}
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(ptl);
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
if (flags & FOLL_SPLIT) {
int ret;
page = pmd_page(*pmd);
if (is_huge_zero_page(page)) {
spin_unlock(ptl);
ret = 0;
split_huge_pmd(vma, pmd, address);
if (pmd_trans_unstable(pmd))
ret = -EBUSY;
} else {
if (unlikely(!try_get_page(page))) {
spin_unlock(ptl);
return ERR_PTR(-ENOMEM);
}
spin_unlock(ptl);
lock_page(page);
ret = split_huge_page(page);
unlock_page(page);
put_page(page);
if (pmd_none(*pmd))
return no_page_table(vma, flags);
}
return ret ? ERR_PTR(ret) :
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
page = follow_trans_huge_pmd(vma, address, pmd, flags);
spin_unlock(ptl);
ctx->page_mask = HPAGE_PMD_NR - 1;
return page;
}
static struct page *follow_pud_mask(struct vm_area_struct *vma,
unsigned long address, p4d_t *p4dp,
unsigned int flags,
struct follow_page_context *ctx)
{
pud_t *pud;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pud = pud_offset(p4dp, address);
if (pud_none(*pud))
return no_page_table(vma, flags);
if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
page = follow_huge_pud(mm, address, pud, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pud_val(*pud)))) {
page = follow_huge_pd(vma, address,
__hugepd(pud_val(*pud)), flags,
PUD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
if (pud_devmap(*pud)) {
ptl = pud_lock(mm, pud);
page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (unlikely(pud_bad(*pud)))
return no_page_table(vma, flags);
return follow_pmd_mask(vma, address, pud, flags, ctx);
}
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
unsigned long address, pgd_t *pgdp,
unsigned int flags,
struct follow_page_context *ctx)
{
p4d_t *p4d;
struct page *page;
p4d = p4d_offset(pgdp, address);
if (p4d_none(*p4d))
return no_page_table(vma, flags);
BUILD_BUG_ON(p4d_huge(*p4d));
if (unlikely(p4d_bad(*p4d)))
return no_page_table(vma, flags);
if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
page = follow_huge_pd(vma, address,
__hugepd(p4d_val(*p4d)), flags,
P4D_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_pud_mask(vma, address, p4d, flags, ctx);
}
/**
* follow_page_mask - look up a page descriptor from a user-virtual address
* @vma: vm_area_struct mapping @address
* @address: virtual address to look up
* @flags: flags modifying lookup behaviour
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
* pointer to output page_mask
*
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
*
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
*
* On output, the @ctx->page_mask is set according to the size of the page.
*
* Return: the mapped (struct page *), %NULL if no mapping exists, or
* an error pointer if there is a mapping to something not represented
* by a page descriptor (see also vm_normal_page()).
*/
struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct follow_page_context *ctx)
{
pgd_t *pgd;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
ctx->page_mask = 0;
/* make this handle hugepd */
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
BUG_ON(flags & FOLL_GET);
return page;
}
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
return no_page_table(vma, flags);
if (pgd_huge(*pgd)) {
page = follow_huge_pgd(mm, address, pgd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
page = follow_huge_pd(vma, address,
__hugepd(pgd_val(*pgd)), flags,
PGDIR_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_p4d_mask(vma, address, pgd, flags, ctx);
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
struct follow_page_context ctx = { NULL };
struct page *page;
page = follow_page_mask(vma, address, foll_flags, &ctx);
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return page;
}
static int get_gate_page(struct mm_struct *mm, unsigned long address,
unsigned int gup_flags, struct vm_area_struct **vma,
struct page **page)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret = -EFAULT;
/* user gate pages are read-only */
if (gup_flags & FOLL_WRITE)
return -EFAULT;
if (address > TASK_SIZE)
pgd = pgd_offset_k(address);
else
pgd = pgd_offset_gate(mm, address);
BUG_ON(pgd_none(*pgd));
p4d = p4d_offset(pgd, address);
BUG_ON(p4d_none(*p4d));
pud = pud_offset(p4d, address);
BUG_ON(pud_none(*pud));
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return -EFAULT;
VM_BUG_ON(pmd_trans_huge(*pmd));
pte = pte_offset_map(pmd, address);
if (pte_none(*pte))
goto unmap;
*vma = get_gate_vma(mm);
if (!page)
goto out;
*page = vm_normal_page(*vma, address, *pte);
if (!*page) {
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
goto unmap;
*page = pte_page(*pte);
/*
* This should never happen (a device public page in the gate
* area).
*/
if (is_device_public_page(*page))
goto unmap;
}
if (unlikely(!try_get_page(*page))) {
ret = -ENOMEM;
goto unmap;
}
out:
ret = 0;
unmap:
pte_unmap(pte);
return ret;
}
/*
* mmap_sem must be held on entry. If @nonblocking != NULL and
* *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
* If it is, *@nonblocking will be set to 0 and -EBUSY returned.
*/
static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
unsigned long address, unsigned int *flags, int *nonblocking)
{
unsigned int fault_flags = 0;
vm_fault_t ret;
/* mlock all present pages, but do not fault in new pages */
if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
return -ENOENT;
if (*flags & FOLL_WRITE)
fault_flags |= FAULT_FLAG_WRITE;
if (*flags & FOLL_REMOTE)
fault_flags |= FAULT_FLAG_REMOTE;
if (nonblocking)
fault_flags |= FAULT_FLAG_ALLOW_RETRY;
if (*flags & FOLL_NOWAIT)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
if (*flags & FOLL_TRIED) {
VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
fault_flags |= FAULT_FLAG_TRIED;
}
ret = handle_mm_fault(vma, address, fault_flags);
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, *flags);
if (err)
return err;
BUG();
}
if (tsk) {
if (ret & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;
}
if (ret & VM_FAULT_RETRY) {
if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
*nonblocking = 0;
return -EBUSY;
}
/*
* The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
* necessary, even if maybe_mkwrite decided not to set pte_write. We
* can thus safely do subsequent page lookups as if they were reads.
* But only do so when looping for pte_write is futile: in some cases
* userspace may also be wanting to write to the gotten user page,
* which a read fault here might prevent (a readonly page might get
* reCOWed by userspace write).
*/
if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
*flags |= FOLL_COW;
return 0;
}
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
vm_flags_t vm_flags = vma->vm_flags;
int write = (gup_flags & FOLL_WRITE);
int foreign = (gup_flags & FOLL_REMOTE);
if (vm_flags & (VM_IO | VM_PFNMAP))
return -EFAULT;
if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
return -EFAULT;
if (write) {
if (!(vm_flags & VM_WRITE)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* We used to let the write,force case do COW in a
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
* set a breakpoint in a read-only mapping of an
* executable, without corrupting the file (yet only
* when that file had been opened for writing!).
* Anon pages in shared mappings are surprising: now
* just reject it.
*/
if (!is_cow_mapping(vm_flags))
return -EFAULT;
}
} else if (!(vm_flags & VM_READ)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* Is there actually any vma we can reach here which does not
* have VM_MAYREAD set?
*/
if (!(vm_flags & VM_MAYREAD))
return -EFAULT;
}
/*
* gups are always data accesses, not instruction
* fetches, so execute=false here
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return -EFAULT;
return 0;
}
/**
* __get_user_pages() - pin user pages in memory
* @tsk: task_struct of target task
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @nonblocking: whether waiting for disk IO or mmap_sem contention
*
* Returns number of pages pinned. This may be fewer than the number
* requested. If nr_pages is 0 or negative, returns 0. If no pages
* were pinned, returns -errno. Each page returned must be released
* with a put_page() call when it is finished with. vmas will only
* remain valid while mmap_sem is held.
*
* Must be called with mmap_sem held. It may be released. See below.
*
* __get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* __get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
* the page is written to, set_page_dirty (or set_page_dirty_lock, as
* appropriate) must be called after the page is finished with, and
* before put_page is called.
*
* If @nonblocking != NULL, __get_user_pages will not wait for disk IO
* or mmap_sem contention, and if waiting is needed to pin all pages,
* *@nonblocking will be set to 0. Further, if @gup_flags does not
* include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
* this case.
*
* A caller using such a combination of @nonblocking and @gup_flags
* must therefore hold the mmap_sem for reading only, and recognize
* when it's been released. Otherwise, it must be held for either
* reading or writing and will not be released.
*
* In most cases, get_user_pages or get_user_pages_fast should be used
* instead of __get_user_pages. __get_user_pages should be used only if
* you need some special @gup_flags.
*/
static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *nonblocking)
{
long ret = 0, i = 0;
struct vm_area_struct *vma = NULL;
struct follow_page_context ctx = { NULL };
if (!nr_pages)
return 0;
VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
/*
* If FOLL_FORCE is set then do not force a full fault as the hinting
* fault information is unrelated to the reference behaviour of a task
* using the address space
*/
if (!(gup_flags & FOLL_FORCE))
gup_flags |= FOLL_NUMA;
do {
struct page *page;
unsigned int foll_flags = gup_flags;
unsigned int page_increm;
/* first iteration or cross vma bound */
if (!vma || start >= vma->vm_end) {
vma = find_extend_vma(mm, start);
if (!vma && in_gate_area(mm, start)) {
ret = get_gate_page(mm, start & PAGE_MASK,
gup_flags, &vma,
pages ? &pages[i] : NULL);
if (ret)
goto out;
ctx.page_mask = 0;
goto next_page;
}
if (!vma || check_vma_flags(vma, gup_flags)) {
ret = -EFAULT;
goto out;
}
if (is_vm_hugetlb_page(vma)) {
i = follow_hugetlb_page(mm, vma, pages, vmas,
&start, &nr_pages, i,
gup_flags, nonblocking);
continue;
}
}
retry:
/*
* If we have a pending SIGKILL, don't keep faulting pages and
* potentially allocating memory.
*/
if (fatal_signal_pending(current)) {
ret = -ERESTARTSYS;
goto out;
}
cond_resched();
page = follow_page_mask(vma, start, foll_flags, &ctx);
if (!page) {
ret = faultin_page(tsk, vma, start, &foll_flags,
nonblocking);
switch (ret) {
case 0:
goto retry;
case -EBUSY:
ret = 0;
/* FALLTHRU */
case -EFAULT:
case -ENOMEM:
case -EHWPOISON:
goto out;
case -ENOENT:
goto next_page;
}
BUG();
} else if (PTR_ERR(page) == -EEXIST) {
/*
* Proper page table entry exists, but no corresponding
* struct page.
*/
goto next_page;
} else if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
if (pages) {
pages[i] = page;
flush_anon_page(vma, page, start);
flush_dcache_page(page);
ctx.page_mask = 0;
}
next_page:
if (vmas) {
vmas[i] = vma;
ctx.page_mask = 0;
}
page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
if (page_increm > nr_pages)
page_increm = nr_pages;
i += page_increm;
start += page_increm * PAGE_SIZE;
nr_pages -= page_increm;
} while (nr_pages);
out:
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return i ? i : ret;
}
static bool vma_permits_fault(struct vm_area_struct *vma,
unsigned int fault_flags)
{
bool write = !!(fault_flags & FAULT_FLAG_WRITE);
bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
if (!(vm_flags & vma->vm_flags))
return false;
/*
* The architecture might have a hardware protection
* mechanism other than read/write that can deny access.
*
* gup always represents data access, not instruction
* fetches, so execute=false here:
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return false;
return true;
}
/*
* fixup_user_fault() - manually resolve a user page fault
* @tsk: the task_struct to use for page fault accounting, or
* NULL if faults are not to be recorded.
* @mm: mm_struct of target mm
* @address: user address
* @fault_flags:flags to pass down to handle_mm_fault()
* @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
* does not allow retry
*
* This is meant to be called in the specific scenario where for locking reasons
* we try to access user memory in atomic context (within a pagefault_disable()
* section), this returns -EFAULT, and we want to resolve the user fault before
* trying again.
*
* Typically this is meant to be used by the futex code.
*
* The main difference with get_user_pages() is that this function will
* unconditionally call handle_mm_fault() which will in turn perform all the
* necessary SW fixup of the dirty and young bits in the PTE, while
* get_user_pages() only guarantees to update these in the struct page.
*
* This is important for some architectures where those bits also gate the
* access permission to the page because they are maintained in software. On
* such architectures, gup() will not be enough to make a subsequent access
* succeed.
*
* This function will not return with an unlocked mmap_sem. So it has not the
* same semantics wrt the @mm->mmap_sem as does filemap_fault().
*/
int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked)
{
struct vm_area_struct *vma;
vm_fault_t ret, major = 0;
if (unlocked)
fault_flags |= FAULT_FLAG_ALLOW_RETRY;
retry:
vma = find_extend_vma(mm, address);
if (!vma || address < vma->vm_start)
return -EFAULT;
if (!vma_permits_fault(vma, fault_flags))
return -EFAULT;
ret = handle_mm_fault(vma, address, fault_flags);
major |= ret & VM_FAULT_MAJOR;
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, 0);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
down_read(&mm->mmap_sem);
if (!(fault_flags & FAULT_FLAG_TRIED)) {
*unlocked = true;
fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
fault_flags |= FAULT_FLAG_TRIED;
goto retry;
}
}
if (tsk) {
if (major)
tsk->maj_flt++;
else
tsk->min_flt++;
}
return 0;
}
EXPORT_SYMBOL_GPL(fixup_user_fault);
static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
int *locked,
unsigned int flags)
{
long ret, pages_done;
bool lock_dropped;
if (locked) {
/* if VM_FAULT_RETRY can be returned, vmas become invalid */
BUG_ON(vmas);
/* check caller initialized locked */
BUG_ON(*locked != 1);
}
if (pages)
flags |= FOLL_GET;
pages_done = 0;
lock_dropped = false;
for (;;) {
ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
vmas, locked);
if (!locked)
/* VM_FAULT_RETRY couldn't trigger, bypass */
return ret;
/* VM_FAULT_RETRY cannot return errors */
if (!*locked) {
BUG_ON(ret < 0);
BUG_ON(ret >= nr_pages);
}
if (!pages)
/* If it's a prefault don't insist harder */
return ret;
if (ret > 0) {
nr_pages -= ret;
pages_done += ret;
if (!nr_pages)
break;
}
if (*locked) {
/*
* VM_FAULT_RETRY didn't trigger or it was a
* FOLL_NOWAIT.
*/
if (!pages_done)
pages_done = ret;
break;
}
/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
pages += ret;
start += ret << PAGE_SHIFT;
/*
* Repeat on the address that fired VM_FAULT_RETRY
* without FAULT_FLAG_ALLOW_RETRY but with
* FAULT_FLAG_TRIED.
*/
*locked = 1;
lock_dropped = true;
down_read(&mm->mmap_sem);
ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
pages, NULL, NULL);
if (ret != 1) {
BUG_ON(ret > 1);
if (!pages_done)
pages_done = ret;
break;
}
nr_pages--;
pages_done++;
if (!nr_pages)
break;
pages++;
start += PAGE_SIZE;
}
if (lock_dropped && *locked) {
/*
* We must let the caller know we temporarily dropped the lock
* and so the critical section protected by it was lost.
*/
up_read(&mm->mmap_sem);
*locked = 0;
}
return pages_done;
}
/*
* We can leverage the VM_FAULT_RETRY functionality in the page fault
* paths better by using either get_user_pages_locked() or
* get_user_pages_unlocked().
*
* get_user_pages_locked() is suitable to replace the form:
*
* down_read(&mm->mmap_sem);
* do_something()
* get_user_pages(tsk, mm, ..., pages, NULL);
* up_read(&mm->mmap_sem);
*
* to:
*
* int locked = 1;
* down_read(&mm->mmap_sem);
* do_something()
* get_user_pages_locked(tsk, mm, ..., pages, &locked);
* if (locked)
* up_read(&mm->mmap_sem);
*/
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
int *locked)
{
/*
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
* vmas. As there are no users of this flag in this call we simply
* disallow this option for now.
*/
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
return -EINVAL;
return __get_user_pages_locked(current, current->mm, start, nr_pages,
pages, NULL, locked,
gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages_locked);
/*
* get_user_pages_unlocked() is suitable to replace the form:
*
* down_read(&mm->mmap_sem);
* get_user_pages(tsk, mm, ..., pages, NULL);
* up_read(&mm->mmap_sem);
*
* with:
*
* get_user_pages_unlocked(tsk, mm, ..., pages);
*
* It is functionally equivalent to get_user_pages_fast so
* get_user_pages_fast should be used instead if specific gup_flags
* (e.g. FOLL_FORCE) are not required.
*/
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags)
{
struct mm_struct *mm = current->mm;
int locked = 1;
long ret;
/*
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
* vmas. As there are no users of this flag in this call we simply
* disallow this option for now.
*/
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
return -EINVAL;
down_read(&mm->mmap_sem);
ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
&locked, gup_flags | FOLL_TOUCH);
if (locked)
up_read(&mm->mmap_sem);
return ret;
}
EXPORT_SYMBOL(get_user_pages_unlocked);
/*
* get_user_pages_remote() - pin user pages in memory
* @tsk: the task_struct to use for page fault accounting, or
* NULL if faults are not to be recorded.
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying lookup behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @locked: pointer to lock flag indicating whether lock is held and
* subsequently whether VM_FAULT_RETRY functionality can be
* utilised. Lock must initially be held.
*
* Returns number of pages pinned. This may be fewer than the number
* requested. If nr_pages is 0 or negative, returns 0. If no pages
* were pinned, returns -errno. Each page returned must be released
* with a put_page() call when it is finished with. vmas will only
* remain valid while mmap_sem is held.
*
* Must be called with mmap_sem held for read or write.
*
* get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page
* won't be freed completely. And mostly callers simply care that the page
* contains data that was valid *at some point in time*. Typically, an IO
* or similar operation cannot guarantee anything stronger anyway because
* locks can't be held over the syscall boundary.
*
* If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
* is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
* be called after the page is finished with, and before put_page is called.
*
* get_user_pages is typically used for fewer-copy IO operations, to get a
* handle on the memory by some means other than accesses via the user virtual
* addresses. The pages may be submitted for DMA to devices or accessed via
* their kernel linear mapping (via the kmap APIs). Care should be taken to
* use the correct cache flushing APIs.
*
* See also get_user_pages_fast, for performance critical applications.
*
* get_user_pages should be phased out in favor of
* get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
* should use get_user_pages because it cannot pass
* FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
*/
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas, int *locked)
{
/*
* FIXME: Current FOLL_LONGTERM behavior is incompatible with
* FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
* vmas. As there are no users of this flag in this call we simply
* disallow this option for now.
*/
if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
return -EINVAL;
return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
locked,
gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}
EXPORT_SYMBOL(get_user_pages_remote);
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
long i;
struct vm_area_struct *vma_prev = NULL;
for (i = 0; i < nr_pages; i++) {
struct vm_area_struct *vma = vmas[i];
if (vma == vma_prev)
continue;
vma_prev = vma;
if (vma_is_fsdax(vma))
return true;
}
return false;
}
#ifdef CONFIG_CMA
static struct page *new_non_cma_page(struct page *page, unsigned long private)
{
/*
* We want to make sure we allocate the new page from the same node
* as the source page.
*/
int nid = page_to_nid(page);
/*
* Trying to allocate a page for migration. Ignore allocation
* failure warnings. We don't force __GFP_THISNODE here because
* this node here is the node where we have CMA reservation and
* in some case these nodes will have really less non movable
* allocation memory.
*/
gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
if (PageHighMem(page))
gfp_mask |= __GFP_HIGHMEM;
#ifdef CONFIG_HUGETLB_PAGE
if (PageHuge(page)) {
struct hstate *h = page_hstate(page);
/*
* We don't want to dequeue from the pool because pool pages will
* mostly be from the CMA region.
*/
return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
}
#endif
if (PageTransHuge(page)) {
struct page *thp;
/*
* ignore allocation failure warnings
*/
gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
/*
* Remove the movable mask so that we don't allocate from
* CMA area again.
*/
thp_gfpmask &= ~__GFP_MOVABLE;
thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
if (!thp)
return NULL;
prep_transhuge_page(thp);
return thp;
}
return __alloc_pages_node(nid, gfp_mask, 0);
}
static long check_and_migrate_cma_pages(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
unsigned int gup_flags)
{
long i;
bool drain_allow = true;
bool migrate_allow = true;
LIST_HEAD(cma_page_list);
check_again:
for (i = 0; i < nr_pages; i++) {
/*
* If we get a page from the CMA zone, since we are going to
* be pinning these entries, we might as well move them out
* of the CMA zone if possible.
*/
if (is_migrate_cma_page(pages[i])) {
struct page *head = compound_head(pages[i]);
if (PageHuge(head)) {
isolate_huge_page(head, &cma_page_list);
} else {
if (!PageLRU(head) && drain_allow) {
lru_add_drain_all();
drain_allow = false;
}
if (!isolate_lru_page(head)) {
list_add_tail(&head->lru, &cma_page_list);
mod_node_page_state(page_pgdat(head),
NR_ISOLATED_ANON +
page_is_file_cache(head),
hpage_nr_pages(head));
}
}
}
}
if (!list_empty(&cma_page_list)) {
/*
* drop the above get_user_pages reference.
*/
for (i = 0; i < nr_pages; i++)
put_page(pages[i]);
if (migrate_pages(&cma_page_list, new_non_cma_page,
NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
/*
* some of the pages failed migration. Do get_user_pages
* without migration.
*/
migrate_allow = false;
if (!list_empty(&cma_page_list))
putback_movable_pages(&cma_page_list);
}
/*
* We did migrate all the pages, Try to get the page references
* again migrating any new CMA pages which we failed to isolate
* earlier.
*/
nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
pages, vmas, NULL,
gup_flags);
if ((nr_pages > 0) && migrate_allow) {
drain_allow = true;
goto check_again;
}
}
return nr_pages;
}
#else
static long check_and_migrate_cma_pages(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
unsigned int gup_flags)
{
return nr_pages;
}
#endif
/*
* __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
* allows us to process the FOLL_LONGTERM flag.
*/
static long __gup_longterm_locked(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
unsigned int gup_flags)
{
struct vm_area_struct **vmas_tmp = vmas;
unsigned long flags = 0;
long rc, i;
if (gup_flags & FOLL_LONGTERM) {
if (!pages)
return -EINVAL;
if (!vmas_tmp) {
vmas_tmp = kcalloc(nr_pages,
sizeof(struct vm_area_struct *),
GFP_KERNEL);
if (!vmas_tmp)
return -ENOMEM;
}
flags = memalloc_nocma_save();
}
rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
vmas_tmp, NULL, gup_flags);
if (gup_flags & FOLL_LONGTERM) {
memalloc_nocma_restore(flags);
if (rc < 0)
goto out;
if (check_dax_vmas(vmas_tmp, rc)) {
for (i = 0; i < rc; i++)
put_page(pages[i]);
rc = -EOPNOTSUPP;
goto out;
}
rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
vmas_tmp, gup_flags);
}
out:
if (vmas_tmp != vmas)
kfree(vmas_tmp);
return rc;
}
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
unsigned long nr_pages,
struct page **pages,
struct vm_area_struct **vmas,
unsigned int flags)
{
return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */
/*
* This is the same as get_user_pages_remote(), just with a
* less-flexible calling convention where we assume that the task
* and mm being operated on are the current task's and don't allow
* passing of a locked parameter. We also obviously don't pass
* FOLL_REMOTE in here.
*/
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas)
{
return __gup_longterm_locked(current, current->mm, start, nr_pages,
pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
/**
* populate_vma_page_range() - populate a range of pages in the vma.
* @vma: target vma
* @start: start address
* @end: end address
* @nonblocking:
*
* This takes care of mlocking the pages too if VM_LOCKED is set.
*
* return 0 on success, negative error code on error.
*
* vma->vm_mm->mmap_sem must be held.
*
* If @nonblocking is NULL, it may be held for read or write and will
* be unperturbed.
*
* If @nonblocking is non-NULL, it must held for read only and may be
* released. If it's released, *@nonblocking will be set to 0.
*/
long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long nr_pages = (end - start) / PAGE_SIZE;
int gup_flags;
VM_BUG_ON(start & ~PAGE_MASK);
VM_BUG_ON(end & ~PAGE_MASK);
VM_BUG_ON_VMA(start < vma->vm_start, vma);
VM_BUG_ON_VMA(end > vma->vm_end, vma);
VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
if (vma->vm_flags & VM_LOCKONFAULT)
gup_flags &= ~FOLL_POPULATE;
/*
* We want to touch writable mappings with a write fault in order
* to break COW, except for shared mappings because these don't COW
* and we would not want to dirty them for nothing.
*/
if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
gup_flags |= FOLL_WRITE;
/*
* We want mlock to succeed for regions that have any permissions
* other than PROT_NONE.
*/
if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
gup_flags |= FOLL_FORCE;
/*
* We made sure addr is within a VMA, so the following will
* not result in a stack expansion that recurses back here.
*/
return __get_user_pages(current, mm, start, nr_pages, gup_flags,
NULL, NULL, nonblocking);
}
/*
* __mm_populate - populate and/or mlock pages within a range of address space.
*
* This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
* flags. VMAs must be already marked with the desired vm_flags, and
* mmap_sem must not be held.
*/
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
struct mm_struct *mm = current->mm;
unsigned long end, nstart, nend;
struct vm_area_struct *vma = NULL;
int locked = 0;
long ret = 0;
end = start + len;
for (nstart = start; nstart < end; nstart = nend) {
/*
* We want to fault in pages for [nstart; end) address range.
* Find first corresponding VMA.
*/
if (!locked) {
locked = 1;
down_read(&mm->mmap_sem);
vma = find_vma(mm, nstart);
} else if (nstart >= vma->vm_end)
vma = vma->vm_next;
if (!vma || vma->vm_start >= end)
break;
/*
* Set [nstart; nend) to intersection of desired address
* range with the first VMA. Also, skip undesirable VMA types.
*/
nend = min(end, vma->vm_end);
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
continue;
if (nstart < vma->vm_start)
nstart = vma->vm_start;
/*
* Now fault in a range of pages. populate_vma_page_range()
* double checks the vma flags, so that it won't mlock pages
* if the vma was already munlocked.
*/
ret = populate_vma_page_range(vma, nstart, nend, &locked);
if (ret < 0) {
if (ignore_errors) {
ret = 0;
continue; /* continue at next VMA */
}
break;
}
nend = nstart + ret * PAGE_SIZE;
ret = 0;
}
if (locked)
up_read(&mm->mmap_sem);
return ret; /* 0 or negative error code */
}
/**
* get_dump_page() - pin user page in memory while writing it to core dump
* @addr: user address
*
* Returns struct page pointer of user page pinned for dump,
* to be freed afterwards by put_page().
*
* Returns NULL on any kind of failure - a hole must then be inserted into
* the corefile, to preserve alignment with its headers; and also returns
* NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
* allowing a hole to be left in the corefile to save diskspace.
*
* Called without mmap_sem, but after all other threads have been killed.
*/
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
struct vm_area_struct *vma;
struct page *page;
if (__get_user_pages(current, current->mm, addr, 1,
FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
NULL) < 1)
return NULL;
flush_cache_page(vma, addr, page_to_pfn(page));
return page;
}
#endif /* CONFIG_ELF_CORE */
/*
* Generic Fast GUP
*
* get_user_pages_fast attempts to pin user pages by walking the page
* tables directly and avoids taking locks. Thus the walker needs to be
* protected from page table pages being freed from under it, and should
* block any THP splits.
*
* One way to achieve this is to have the walker disable interrupts, and
* rely on IPIs from the TLB flushing code blocking before the page table
* pages are freed. This is unsuitable for architectures that do not need
* to broadcast an IPI when invalidating TLBs.
*
* Another way to achieve this is to batch up page table containing pages
* belonging to more than one mm_user, then rcu_sched a callback to free those
* pages. Disabling interrupts will allow the fast_gup walker to both block
* the rcu_sched callback, and an IPI that we broadcast for splitting THPs
* (which is a relatively rare event). The code below adopts this strategy.
*
* Before activating this code, please be aware that the following assumptions
* are currently made:
*
* *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
* free pages containing page tables or TLB flushing requires IPI broadcast.
*
* *) ptes can be read atomically by the architecture.
*
* *) access_ok is sufficient to validate userspace address ranges.
*
* The last two assumptions can be relaxed by the addition of helper functions.
*
* This code is based heavily on the PowerPC implementation by Nick Piggin.
*/
#ifdef CONFIG_HAVE_GENERIC_GUP
#ifndef gup_get_pte
/*
* We assume that the PTE can be read atomically. If this is not the case for
* your architecture, please provide the helper.
*/
static inline pte_t gup_get_pte(pte_t *ptep)
{
return READ_ONCE(*ptep);
}
#endif
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
{
while ((*nr) - nr_start) {
struct page *page = pages[--(*nr)];
ClearPageReferenced(page);
put_page(page);
}
}
/*
* Return the compund head page with ref appropriately incremented,
* or NULL if that failed.
*/
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
struct page *head = compound_head(page);
if (WARN_ON_ONCE(page_ref_count(head) < 0))
return NULL;
if (unlikely(!page_cache_add_speculative(head, refs)))
return NULL;
return head;
}
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
struct dev_pagemap *pgmap = NULL;
int nr_start = *nr, ret = 0;
pte_t *ptep, *ptem;
ptem = ptep = pte_offset_map(&pmd, addr);
do {
pte_t pte = gup_get_pte(ptep);
struct page *head, *page;
/*
* Similar to the PMD case below, NUMA hinting must take slow
* path using the pte_protnone check.
*/
if (pte_protnone(pte))
goto pte_unmap;
if (!pte_access_permitted(pte, flags & FOLL_WRITE))
goto pte_unmap;
if (pte_devmap(pte)) {
if (unlikely(flags & FOLL_LONGTERM))
goto pte_unmap;
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, pages);
goto pte_unmap;
}
} else if (pte_special(pte))
goto pte_unmap;
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
page = pte_page(pte);
head = try_get_compound_head(page, 1);
if (!head)
goto pte_unmap;
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
put_page(head);
goto pte_unmap;
}
VM_BUG_ON_PAGE(compound_head(page) != head, page);
SetPageReferenced(page);
pages[*nr] = page;
(*nr)++;
} while (ptep++, addr += PAGE_SIZE, addr != end);
ret = 1;
pte_unmap:
if (pgmap)
put_dev_pagemap(pgmap);
pte_unmap(ptem);
return ret;
}
#else
/*
* If we can't determine whether or not a pte is special, then fail immediately
* for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
* to be special.
*
* For a futex to be placed on a THP tail page, get_futex_key requires a
* __get_user_pages_fast implementation that can pin pages. Thus it's still
* useful to have gup_huge_pmd even if we can't operate on ptes.
*/
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
return 0;
}
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
int nr_start = *nr;
struct dev_pagemap *pgmap = NULL;
do {
struct page *page = pfn_to_page(pfn);
pgmap = get_dev_pagemap(pfn, pgmap);
if (unlikely(!pgmap)) {
undo_dev_pagemap(nr, nr_start, pages);
return 0;
}
SetPageReferenced(page);
pages[*nr] = page;
get_page(page);
(*nr)++;
pfn++;
} while (addr += PAGE_SIZE, addr != end);
if (pgmap)
put_dev_pagemap(pgmap);
return 1;
}
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
return 0;
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
undo_dev_pagemap(nr, nr_start, pages);
return 0;
}
return 1;
}
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
unsigned long fault_pfn;
int nr_start = *nr;
fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
return 0;
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
undo_dev_pagemap(nr, nr_start, pages);
return 0;
}
return 1;
}
#else
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
BUILD_BUG();
return 0;
}
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
unsigned long end, struct page **pages, int *nr)
{
BUILD_BUG();
return 0;
}
#endif
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages, int *nr)
{
struct page *head, *page;
int refs;
if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pmd_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
}
refs = 0;
page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
do {
pages[*nr] = page;
(*nr)++;
page++;
refs++;
} while (addr += PAGE_SIZE, addr != end);
head = try_get_compound_head(pmd_page(orig), refs);
if (!head) {
*nr -= refs;
return 0;
}
if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
*nr -= refs;
while (refs--)
put_page(head);
return 0;
}
SetPageReferenced(head);
return 1;
}
static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
unsigned long end, unsigned int flags, struct page **pages, int *nr)
{
struct page *head, *page;
int refs;
if (!pud_access_permitted(orig, flags & FOLL_WRITE))
return 0;
if (pud_devmap(orig)) {
if (unlikely(flags & FOLL_LONGTERM))
return 0;
return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
}
refs = 0;
page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
do {
pages[*nr] = page;
(*nr)++;
page++;
refs++;
} while (addr += PAGE_SIZE, addr != end);
head = try_get_compound_head(pud_page(orig), refs);
if (!head) {
*nr -= refs;
return 0;
}
if (unlikely(pud_val(orig) != pud_val(*pudp))) {
*nr -= refs;
while (refs--)
put_page(head);
return 0;
}
SetPageReferenced(head);
return 1;
}
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
unsigned long end, unsigned int flags,
struct page **pages, int *nr)
{
int refs;
struct page *head, *page;
if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
return 0;
BUILD_BUG_ON(pgd_devmap(orig));
refs = 0;
page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
do {
pages[*nr] = page;
(*nr)++;
page++;
refs++;
} while (addr += PAGE_SIZE, addr != end);
head = try_get_compound_head(pgd_page(orig), refs);
if (!head) {
*nr -= refs;
return 0;
}
if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
*nr -= refs;
while (refs--)
put_page(head);
return 0;
}
SetPageReferenced(head);
return 1;
}
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pmd_t *pmdp;
pmdp = pmd_offset(&pud, addr);
do {
pmd_t pmd = READ_ONCE(*pmdp);
next = pmd_addr_end(addr, end);
if (!pmd_present(pmd))
return 0;
if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
pmd_devmap(pmd))) {
/*
* NUMA hinting faults need to be handled in the GUP
* slowpath for accounting purposes and so that they
* can be serialised against THP migration.
*/
if (pmd_protnone(pmd))
return 0;
if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
pages, nr))
return 0;
} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
/*
* architecture have different format for hugetlbfs
* pmd format and THP pmd format
*/
if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
PMD_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
return 0;
} while (pmdp++, addr = next, addr != end);
return 1;
}
static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pud_t *pudp;
pudp = pud_offset(&p4d, addr);
do {
pud_t pud = READ_ONCE(*pudp);
next = pud_addr_end(addr, end);
if (pud_none(pud))
return 0;
if (unlikely(pud_huge(pud))) {
if (!gup_huge_pud(pud, pudp, addr, next, flags,
pages, nr))
return 0;
} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
PUD_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
return 0;
} while (pudp++, addr = next, addr != end);
return 1;
}
static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
p4d_t *p4dp;
p4dp = p4d_offset(&pgd, addr);
do {
p4d_t p4d = READ_ONCE(*p4dp);
next = p4d_addr_end(addr, end);
if (p4d_none(p4d))
return 0;
BUILD_BUG_ON(p4d_huge(p4d));
if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
P4D_SHIFT, next, flags, pages, nr))
return 0;
} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
return 0;
} while (p4dp++, addr = next, addr != end);
return 1;
}
static void gup_pgd_range(unsigned long addr, unsigned long end,
unsigned int flags, struct page **pages, int *nr)
{
unsigned long next;
pgd_t *pgdp;
pgdp = pgd_offset(current->mm, addr);
do {
pgd_t pgd = READ_ONCE(*pgdp);
next = pgd_addr_end(addr, end);
if (pgd_none(pgd))
return;
if (unlikely(pgd_huge(pgd))) {
if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
pages, nr))
return;
} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
PGDIR_SHIFT, next, flags, pages, nr))
return;
} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
return;
} while (pgdp++, addr = next, addr != end);
}
#ifndef gup_fast_permitted
/*
* Check if it's allowed to use __get_user_pages_fast() for the range, or
* we need to fall back to the slow version:
*/
bool gup_fast_permitted(unsigned long start, int nr_pages)
{
unsigned long len, end;
len = (unsigned long) nr_pages << PAGE_SHIFT;
end = start + len;
return end >= start;
}
#endif
/*
* Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
* the regular GUP.
* Note a difference with get_user_pages_fast: this always returns the
* number of pages pinned, 0 if no pages were pinned.
*/
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
struct page **pages)
{
unsigned long len, end;
unsigned long flags;
int nr = 0;
start &= PAGE_MASK;
len = (unsigned long) nr_pages << PAGE_SHIFT;
end = start + len;
if (unlikely(!access_ok((void __user *)start, len)))
return 0;
/*
* Disable interrupts. We use the nested form as we can already have
* interrupts disabled by get_futex_key.
*
* With interrupts disabled, we block page table pages from being
* freed from under us. See struct mmu_table_batch comments in
* include/asm-generic/tlb.h for more details.
*
* We do not adopt an rcu_read_lock(.) here as we also want to
* block IPIs that come from THPs splitting.
*/
if (gup_fast_permitted(start, nr_pages)) {
local_irq_save(flags);
gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
local_irq_restore(flags);
}
return nr;
}
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
int ret;
/*
* FIXME: FOLL_LONGTERM does not work with
* get_user_pages_unlocked() (see comments in that function)
*/
if (gup_flags & FOLL_LONGTERM) {
down_read(&current->mm->mmap_sem);
ret = __gup_longterm_locked(current, current->mm,
start, nr_pages,
pages, NULL, gup_flags);
up_read(&current->mm->mmap_sem);
} else {
ret = get_user_pages_unlocked(start, nr_pages,
pages, gup_flags);
}
return ret;
}
/**
* get_user_pages_fast() - pin user pages in memory
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long.
*
* Attempt to pin user pages in memory without taking mm->mmap_sem.
* If not successful, it will fall back to taking the lock and
* calling get_user_pages().
*
* Returns number of pages pinned. This may be fewer than the number
* requested. If nr_pages is 0 or negative, returns 0. If no pages
* were pinned, returns -errno.
*/
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages)
{
unsigned long addr, len, end;
int nr = 0, ret = 0;
start &= PAGE_MASK;
addr = start;
len = (unsigned long) nr_pages << PAGE_SHIFT;
end = start + len;
if (nr_pages <= 0)
return 0;
if (unlikely(!access_ok((void __user *)start, len)))
return -EFAULT;
if (gup_fast_permitted(start, nr_pages)) {
local_irq_disable();
gup_pgd_range(addr, end, gup_flags, pages, &nr);
local_irq_enable();
ret = nr;
}
if (nr < nr_pages) {
/* Try to get the remaining pages with get_user_pages */
start += nr << PAGE_SHIFT;
pages += nr;
ret = __gup_longterm_unlocked(start, nr_pages - nr,
gup_flags, pages);
/* Have to be a bit careful with return values */
if (nr > 0) {
if (ret < 0)
ret = nr;
else
ret += nr;
}
}
return ret;
}
#endif /* CONFIG_HAVE_GENERIC_GUP */