tmp_suning_uos_patched/arch/powerpc/sysdev/cpm_common.c
Anton Vorontsov 0c7b87b085 powerpc/qe: Make qe_reset() code path safe for repeated invocation
For MPC8569 CPUs we'll need to reset QE after each suspend, so make
qe_reset() code path suitable for repeated invocation, that is:

- Don't initialize rheap structures if already initialized;
- Don't allocate muram for SDMA if already allocated, just reinitialize
  registers with previously allocated muram offset;
- Remove __init attributes from qe_reset() and cpm_muram_init();

Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2009-11-11 21:43:13 -06:00

351 lines
8.5 KiB
C

/*
* Common CPM code
*
* Author: Scott Wood <scottwood@freescale.com>
*
* Copyright 2007 Freescale Semiconductor, Inc.
*
* Some parts derived from commproc.c/cpm2_common.c, which is:
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
* Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
* Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
* 2006 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/of_device.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <asm/udbg.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/rheap.h>
#include <asm/cpm.h>
#include <mm/mmu_decl.h>
#if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO)
#include <linux/of_gpio.h>
#endif
#ifdef CONFIG_PPC_EARLY_DEBUG_CPM
static u32 __iomem *cpm_udbg_txdesc =
(u32 __iomem __force *)CONFIG_PPC_EARLY_DEBUG_CPM_ADDR;
static void udbg_putc_cpm(char c)
{
u8 __iomem *txbuf = (u8 __iomem __force *)in_be32(&cpm_udbg_txdesc[1]);
if (c == '\n')
udbg_putc_cpm('\r');
while (in_be32(&cpm_udbg_txdesc[0]) & 0x80000000)
;
out_8(txbuf, c);
out_be32(&cpm_udbg_txdesc[0], 0xa0000001);
}
void __init udbg_init_cpm(void)
{
if (cpm_udbg_txdesc) {
#ifdef CONFIG_CPM2
setbat(1, 0xf0000000, 0xf0000000, 1024*1024, PAGE_KERNEL_NCG);
#endif
udbg_putc = udbg_putc_cpm;
}
}
#endif
static spinlock_t cpm_muram_lock;
static rh_block_t cpm_boot_muram_rh_block[16];
static rh_info_t cpm_muram_info;
static u8 __iomem *muram_vbase;
static phys_addr_t muram_pbase;
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
int cpm_muram_init(void)
{
struct device_node *np;
struct resource r;
u32 zero[OF_MAX_ADDR_CELLS] = {};
resource_size_t max = 0;
int i = 0;
int ret = 0;
if (muram_pbase)
return 0;
spin_lock_init(&cpm_muram_lock);
/* initialize the info header */
rh_init(&cpm_muram_info, 1,
sizeof(cpm_boot_muram_rh_block) /
sizeof(cpm_boot_muram_rh_block[0]),
cpm_boot_muram_rh_block);
np = of_find_compatible_node(NULL, NULL, "fsl,cpm-muram-data");
if (!np) {
/* try legacy bindings */
np = of_find_node_by_name(NULL, "data-only");
if (!np) {
printk(KERN_ERR "Cannot find CPM muram data node");
ret = -ENODEV;
goto out;
}
}
muram_pbase = of_translate_address(np, zero);
if (muram_pbase == (phys_addr_t)OF_BAD_ADDR) {
printk(KERN_ERR "Cannot translate zero through CPM muram node");
ret = -ENODEV;
goto out;
}
while (of_address_to_resource(np, i++, &r) == 0) {
if (r.end > max)
max = r.end;
rh_attach_region(&cpm_muram_info, r.start - muram_pbase,
r.end - r.start + 1);
}
muram_vbase = ioremap(muram_pbase, max - muram_pbase + 1);
if (!muram_vbase) {
printk(KERN_ERR "Cannot map CPM muram");
ret = -ENOMEM;
}
out:
of_node_put(np);
return ret;
}
/**
* cpm_muram_alloc - allocate the requested size worth of multi-user ram
* @size: number of bytes to allocate
* @align: requested alignment, in bytes
*
* This function returns an offset into the muram area.
* Use cpm_dpram_addr() to get the virtual address of the area.
* Use cpm_muram_free() to free the allocation.
*/
unsigned long cpm_muram_alloc(unsigned long size, unsigned long align)
{
unsigned long start;
unsigned long flags;
spin_lock_irqsave(&cpm_muram_lock, flags);
cpm_muram_info.alignment = align;
start = rh_alloc(&cpm_muram_info, size, "commproc");
spin_unlock_irqrestore(&cpm_muram_lock, flags);
return start;
}
EXPORT_SYMBOL(cpm_muram_alloc);
/**
* cpm_muram_free - free a chunk of multi-user ram
* @offset: The beginning of the chunk as returned by cpm_muram_alloc().
*/
int cpm_muram_free(unsigned long offset)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&cpm_muram_lock, flags);
ret = rh_free(&cpm_muram_info, offset);
spin_unlock_irqrestore(&cpm_muram_lock, flags);
return ret;
}
EXPORT_SYMBOL(cpm_muram_free);
/**
* cpm_muram_alloc_fixed - reserve a specific region of multi-user ram
* @offset: the offset into the muram area to reserve
* @size: the number of bytes to reserve
*
* This function returns "start" on success, -ENOMEM on failure.
* Use cpm_dpram_addr() to get the virtual address of the area.
* Use cpm_muram_free() to free the allocation.
*/
unsigned long cpm_muram_alloc_fixed(unsigned long offset, unsigned long size)
{
unsigned long start;
unsigned long flags;
spin_lock_irqsave(&cpm_muram_lock, flags);
cpm_muram_info.alignment = 1;
start = rh_alloc_fixed(&cpm_muram_info, offset, size, "commproc");
spin_unlock_irqrestore(&cpm_muram_lock, flags);
return start;
}
EXPORT_SYMBOL(cpm_muram_alloc_fixed);
/**
* cpm_muram_addr - turn a muram offset into a virtual address
* @offset: muram offset to convert
*/
void __iomem *cpm_muram_addr(unsigned long offset)
{
return muram_vbase + offset;
}
EXPORT_SYMBOL(cpm_muram_addr);
unsigned long cpm_muram_offset(void __iomem *addr)
{
return addr - (void __iomem *)muram_vbase;
}
EXPORT_SYMBOL(cpm_muram_offset);
/**
* cpm_muram_dma - turn a muram virtual address into a DMA address
* @offset: virtual address from cpm_muram_addr() to convert
*/
dma_addr_t cpm_muram_dma(void __iomem *addr)
{
return muram_pbase + ((u8 __iomem *)addr - muram_vbase);
}
EXPORT_SYMBOL(cpm_muram_dma);
#if defined(CONFIG_CPM2) || defined(CONFIG_8xx_GPIO)
struct cpm2_ioports {
u32 dir, par, sor, odr, dat;
u32 res[3];
};
struct cpm2_gpio32_chip {
struct of_mm_gpio_chip mm_gc;
spinlock_t lock;
/* shadowed data register to clear/set bits safely */
u32 cpdata;
};
static inline struct cpm2_gpio32_chip *
to_cpm2_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
{
return container_of(mm_gc, struct cpm2_gpio32_chip, mm_gc);
}
static void cpm2_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
{
struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
struct cpm2_ioports __iomem *iop = mm_gc->regs;
cpm2_gc->cpdata = in_be32(&iop->dat);
}
static int cpm2_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm2_ioports __iomem *iop = mm_gc->regs;
u32 pin_mask;
pin_mask = 1 << (31 - gpio);
return !!(in_be32(&iop->dat) & pin_mask);
}
static void __cpm2_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
int value)
{
struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
struct cpm2_ioports __iomem *iop = mm_gc->regs;
if (value)
cpm2_gc->cpdata |= pin_mask;
else
cpm2_gc->cpdata &= ~pin_mask;
out_be32(&iop->dat, cpm2_gc->cpdata);
}
static void cpm2_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm2_gc->lock, flags);
__cpm2_gpio32_set(mm_gc, pin_mask, value);
spin_unlock_irqrestore(&cpm2_gc->lock, flags);
}
static int cpm2_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
struct cpm2_ioports __iomem *iop = mm_gc->regs;
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm2_gc->lock, flags);
setbits32(&iop->dir, pin_mask);
__cpm2_gpio32_set(mm_gc, pin_mask, val);
spin_unlock_irqrestore(&cpm2_gc->lock, flags);
return 0;
}
static int cpm2_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
struct cpm2_gpio32_chip *cpm2_gc = to_cpm2_gpio32_chip(mm_gc);
struct cpm2_ioports __iomem *iop = mm_gc->regs;
unsigned long flags;
u32 pin_mask = 1 << (31 - gpio);
spin_lock_irqsave(&cpm2_gc->lock, flags);
clrbits32(&iop->dir, pin_mask);
spin_unlock_irqrestore(&cpm2_gc->lock, flags);
return 0;
}
int cpm2_gpiochip_add32(struct device_node *np)
{
struct cpm2_gpio32_chip *cpm2_gc;
struct of_mm_gpio_chip *mm_gc;
struct of_gpio_chip *of_gc;
struct gpio_chip *gc;
cpm2_gc = kzalloc(sizeof(*cpm2_gc), GFP_KERNEL);
if (!cpm2_gc)
return -ENOMEM;
spin_lock_init(&cpm2_gc->lock);
mm_gc = &cpm2_gc->mm_gc;
of_gc = &mm_gc->of_gc;
gc = &of_gc->gc;
mm_gc->save_regs = cpm2_gpio32_save_regs;
of_gc->gpio_cells = 2;
gc->ngpio = 32;
gc->direction_input = cpm2_gpio32_dir_in;
gc->direction_output = cpm2_gpio32_dir_out;
gc->get = cpm2_gpio32_get;
gc->set = cpm2_gpio32_set;
return of_mm_gpiochip_add(np, mm_gc);
}
#endif /* CONFIG_CPM2 || CONFIG_8xx_GPIO */