tmp_suning_uos_patched/crypto/xcbc.c
Herbert Xu b588ef6e69 crypto: xcbc - Use crypto_xor
This patch replaces the local xor function with the generic
crypto_xor function.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2009-07-22 14:38:10 +08:00

304 lines
7.3 KiB
C

/*
* Copyright (C)2006 USAGI/WIDE Project
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author:
* Kazunori Miyazawa <miyazawa@linux-ipv6.org>
*/
#include <crypto/internal/hash.h>
#include <linux/err.h>
#include <linux/kernel.h>
static u_int32_t ks[12] = {0x01010101, 0x01010101, 0x01010101, 0x01010101,
0x02020202, 0x02020202, 0x02020202, 0x02020202,
0x03030303, 0x03030303, 0x03030303, 0x03030303};
/*
* +------------------------
* | <parent tfm>
* +------------------------
* | crypto_xcbc_ctx
* +------------------------
* | odds (block size)
* +------------------------
* | prev (block size)
* +------------------------
* | key (block size)
* +------------------------
* | consts (block size * 3)
* +------------------------
*/
struct crypto_xcbc_ctx {
struct crypto_cipher *child;
u8 *odds;
u8 *prev;
u8 *key;
u8 *consts;
unsigned int keylen;
unsigned int len;
};
static int _crypto_xcbc_digest_setkey(struct crypto_shash *parent,
struct crypto_xcbc_ctx *ctx)
{
int bs = crypto_shash_blocksize(parent);
int err = 0;
u8 key1[bs];
if ((err = crypto_cipher_setkey(ctx->child, ctx->key, ctx->keylen)))
return err;
crypto_cipher_encrypt_one(ctx->child, key1, ctx->consts);
return crypto_cipher_setkey(ctx->child, key1, bs);
}
static int crypto_xcbc_digest_setkey(struct crypto_shash *parent,
const u8 *inkey, unsigned int keylen)
{
struct crypto_xcbc_ctx *ctx = crypto_shash_ctx(parent);
if (keylen != crypto_cipher_blocksize(ctx->child))
return -EINVAL;
ctx->keylen = keylen;
memcpy(ctx->key, inkey, keylen);
ctx->consts = (u8*)ks;
return _crypto_xcbc_digest_setkey(parent, ctx);
}
static int crypto_xcbc_digest_init(struct shash_desc *pdesc)
{
struct crypto_xcbc_ctx *ctx = crypto_shash_ctx(pdesc->tfm);
int bs = crypto_shash_blocksize(pdesc->tfm);
ctx->len = 0;
memset(ctx->odds, 0, bs);
memset(ctx->prev, 0, bs);
return 0;
}
static int crypto_xcbc_digest_update(struct shash_desc *pdesc, const u8 *p,
unsigned int len)
{
struct crypto_shash *parent = pdesc->tfm;
struct crypto_xcbc_ctx *ctx = crypto_shash_ctx(parent);
struct crypto_cipher *tfm = ctx->child;
int bs = crypto_shash_blocksize(parent);
/* checking the data can fill the block */
if ((ctx->len + len) <= bs) {
memcpy(ctx->odds + ctx->len, p, len);
ctx->len += len;
return 0;
}
/* filling odds with new data and encrypting it */
memcpy(ctx->odds + ctx->len, p, bs - ctx->len);
len -= bs - ctx->len;
p += bs - ctx->len;
crypto_xor(ctx->prev, ctx->odds, bs);
crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev);
/* clearing the length */
ctx->len = 0;
/* encrypting the rest of data */
while (len > bs) {
crypto_xor(ctx->prev, p, bs);
crypto_cipher_encrypt_one(tfm, ctx->prev, ctx->prev);
p += bs;
len -= bs;
}
/* keeping the surplus of blocksize */
if (len) {
memcpy(ctx->odds, p, len);
ctx->len = len;
}
return 0;
}
static int crypto_xcbc_digest_final(struct shash_desc *pdesc, u8 *out)
{
struct crypto_shash *parent = pdesc->tfm;
struct crypto_xcbc_ctx *ctx = crypto_shash_ctx(parent);
struct crypto_cipher *tfm = ctx->child;
int bs = crypto_shash_blocksize(parent);
int err = 0;
if (ctx->len == bs) {
u8 key2[bs];
if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
return err;
crypto_cipher_encrypt_one(tfm, key2,
(u8 *)(ctx->consts + bs));
crypto_xor(ctx->prev, ctx->odds, bs);
crypto_xor(ctx->prev, key2, bs);
_crypto_xcbc_digest_setkey(parent, ctx);
crypto_cipher_encrypt_one(tfm, out, ctx->prev);
} else {
u8 key3[bs];
unsigned int rlen;
u8 *p = ctx->odds + ctx->len;
*p = 0x80;
p++;
rlen = bs - ctx->len -1;
if (rlen)
memset(p, 0, rlen);
if ((err = crypto_cipher_setkey(tfm, ctx->key, ctx->keylen)) != 0)
return err;
crypto_cipher_encrypt_one(tfm, key3,
(u8 *)(ctx->consts + bs * 2));
crypto_xor(ctx->prev, ctx->odds, bs);
crypto_xor(ctx->prev, key3, bs);
_crypto_xcbc_digest_setkey(parent, ctx);
crypto_cipher_encrypt_one(tfm, out, ctx->prev);
}
return 0;
}
static int xcbc_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_cipher *cipher;
struct crypto_instance *inst = (void *)tfm->__crt_alg;
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
struct crypto_xcbc_ctx *ctx = crypto_tfm_ctx(tfm);
int bs = crypto_tfm_alg_blocksize(tfm);
cipher = crypto_spawn_cipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
switch(bs) {
case 16:
break;
default:
return -EINVAL;
}
ctx->child = cipher;
ctx->odds = (u8*)(ctx+1);
ctx->prev = ctx->odds + bs;
ctx->key = ctx->prev + bs;
return 0;
};
static void xcbc_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_xcbc_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(ctx->child);
}
static int xcbc_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct shash_instance *inst;
struct crypto_alg *alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
if (err)
return err;
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
CRYPTO_ALG_TYPE_MASK);
if (IS_ERR(alg))
return PTR_ERR(alg);
switch(alg->cra_blocksize) {
case 16:
break;
default:
goto out_put_alg;
}
inst = shash_alloc_instance("xcbc", alg);
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto out_put_alg;
err = crypto_init_spawn(shash_instance_ctx(inst), alg,
shash_crypto_instance(inst),
CRYPTO_ALG_TYPE_MASK);
if (err)
goto out_free_inst;
inst->alg.base.cra_priority = alg->cra_priority;
inst->alg.base.cra_blocksize = alg->cra_blocksize;
inst->alg.base.cra_alignmask = alg->cra_alignmask;
inst->alg.digestsize = alg->cra_blocksize;
inst->alg.base.cra_ctxsize = sizeof(struct crypto_xcbc_ctx) +
ALIGN(alg->cra_blocksize * 3,
sizeof(void *));
inst->alg.base.cra_init = xcbc_init_tfm;
inst->alg.base.cra_exit = xcbc_exit_tfm;
inst->alg.init = crypto_xcbc_digest_init;
inst->alg.update = crypto_xcbc_digest_update;
inst->alg.final = crypto_xcbc_digest_final;
inst->alg.setkey = crypto_xcbc_digest_setkey;
err = shash_register_instance(tmpl, inst);
if (err) {
out_free_inst:
shash_free_instance(shash_crypto_instance(inst));
}
out_put_alg:
crypto_mod_put(alg);
return err;
}
static struct crypto_template crypto_xcbc_tmpl = {
.name = "xcbc",
.create = xcbc_create,
.free = shash_free_instance,
.module = THIS_MODULE,
};
static int __init crypto_xcbc_module_init(void)
{
return crypto_register_template(&crypto_xcbc_tmpl);
}
static void __exit crypto_xcbc_module_exit(void)
{
crypto_unregister_template(&crypto_xcbc_tmpl);
}
module_init(crypto_xcbc_module_init);
module_exit(crypto_xcbc_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("XCBC keyed hash algorithm");