tmp_suning_uos_patched/lib/mpi/generic_mpih-mul2.c
Dmitry Kasatkin cdec9cb516 crypto: GnuPG based MPI lib - source files (part 1)
Adds the multi-precision-integer maths library which was originally taken
from GnuPG and ported to the kernel by (among others) David Howells.
This version is taken from Fedora kernel 2.6.32-71.14.1.el6.
The difference is that checkpatch reported errors and warnings have been fixed.

This library is used to implemenet RSA digital signature verification
used in IMA/EVM integrity protection subsystem.

Due to patch size limitation, the patch is divided into 4 parts.

Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
2011-11-09 11:45:22 +02:00

61 lines
1.9 KiB
C

/* mpihelp-mul_2.c - MPI helper functions
* Copyright (C) 1994, 1996, 1997, 1998, 2001 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
* The GNU MP Library itself is published under the LGPL;
* however I decided to publish this code under the plain GPL.
*/
#include "mpi-internal.h"
#include "longlong.h"
mpi_limb_t
mpihelp_addmul_1(mpi_ptr_t res_ptr, mpi_ptr_t s1_ptr,
mpi_size_t s1_size, mpi_limb_t s2_limb)
{
mpi_limb_t cy_limb;
mpi_size_t j;
mpi_limb_t prod_high, prod_low;
mpi_limb_t x;
/* The loop counter and index J goes from -SIZE to -1. This way
* the loop becomes faster. */
j = -s1_size;
res_ptr -= j;
s1_ptr -= j;
cy_limb = 0;
do {
umul_ppmm(prod_high, prod_low, s1_ptr[j], s2_limb);
prod_low += cy_limb;
cy_limb = (prod_low < cy_limb ? 1 : 0) + prod_high;
x = res_ptr[j];
prod_low = x + prod_low;
cy_limb += prod_low < x ? 1 : 0;
res_ptr[j] = prod_low;
} while (++j);
return cy_limb;
}