tmp_suning_uos_patched/drivers/net/sfc/mtd.c
Ben Hutchings 5a27e86bab sfc: Use fixed-size buffers for MCDI NVRAM requests
The low-level MCDI code always uses 32-bit MMIO operations, and
callers must pad input and output buffers to multiples of 4 bytes.
The MCDI NVRAM functions are not doing this.  Also, their buffers are
declared as variable-length arrays with no explicit maximum length.

Switch to a fixed buffer size based on the chunk size used by the
MTD driver (which is a multiple of 4).

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-01-25 15:49:59 -08:00

652 lines
15 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/delay.h>
#include <linux/rtnetlink.h>
#define EFX_DRIVER_NAME "sfc_mtd"
#include "net_driver.h"
#include "spi.h"
#include "efx.h"
#include "nic.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#define EFX_SPI_VERIFY_BUF_LEN 16
struct efx_mtd_partition {
struct mtd_info mtd;
union {
struct {
bool updating;
u8 nvram_type;
u16 fw_subtype;
} mcdi;
size_t offset;
};
const char *type_name;
char name[IFNAMSIZ + 20];
};
struct efx_mtd_ops {
int (*read)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, u8 *buffer);
int (*erase)(struct mtd_info *mtd, loff_t start, size_t len);
int (*write)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, const u8 *buffer);
int (*sync)(struct mtd_info *mtd);
};
struct efx_mtd {
struct list_head node;
struct efx_nic *efx;
const struct efx_spi_device *spi;
const char *name;
const struct efx_mtd_ops *ops;
size_t n_parts;
struct efx_mtd_partition part[0];
};
#define efx_for_each_partition(part, efx_mtd) \
for ((part) = &(efx_mtd)->part[0]; \
(part) != &(efx_mtd)->part[(efx_mtd)->n_parts]; \
(part)++)
#define to_efx_mtd_partition(mtd) \
container_of(mtd, struct efx_mtd_partition, mtd)
static int falcon_mtd_probe(struct efx_nic *efx);
static int siena_mtd_probe(struct efx_nic *efx);
/* SPI utilities */
static int efx_spi_slow_wait(struct efx_mtd *efx_mtd, bool uninterruptible)
{
const struct efx_spi_device *spi = efx_mtd->spi;
struct efx_nic *efx = efx_mtd->efx;
u8 status;
int rc, i;
/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
for (i = 0; i < 40; i++) {
__set_current_state(uninterruptible ?
TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 10);
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & SPI_STATUS_NRDY))
return 0;
if (signal_pending(current))
return -EINTR;
}
EFX_ERR(efx, "timed out waiting for %s\n", efx_mtd->name);
return -ETIMEDOUT;
}
static int
efx_spi_unlock(struct efx_nic *efx, const struct efx_spi_device *spi)
{
const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
SPI_STATUS_BP0);
u8 status;
int rc;
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & unlock_mask))
return 0; /* already unlocked */
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
if (rc)
return rc;
status &= ~unlock_mask;
rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
NULL, sizeof(status));
if (rc)
return rc;
rc = falcon_spi_wait_write(efx, spi);
if (rc)
return rc;
return 0;
}
static int efx_spi_erase(struct efx_mtd *efx_mtd, loff_t start, size_t len)
{
const struct efx_spi_device *spi = efx_mtd->spi;
struct efx_nic *efx = efx_mtd->efx;
unsigned pos, block_len;
u8 empty[EFX_SPI_VERIFY_BUF_LEN];
u8 buffer[EFX_SPI_VERIFY_BUF_LEN];
int rc;
if (len != spi->erase_size)
return -EINVAL;
if (spi->erase_command == 0)
return -EOPNOTSUPP;
rc = efx_spi_unlock(efx, spi);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
NULL, 0);
if (rc)
return rc;
rc = efx_spi_slow_wait(efx_mtd, false);
/* Verify the entire region has been wiped */
memset(empty, 0xff, sizeof(empty));
for (pos = 0; pos < len; pos += block_len) {
block_len = min(len - pos, sizeof(buffer));
rc = falcon_spi_read(efx, spi, start + pos, block_len,
NULL, buffer);
if (rc)
return rc;
if (memcmp(empty, buffer, block_len))
return -EIO;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current))
return -EINTR;
}
return rc;
}
/* MTD interface */
static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase)
{
struct efx_mtd *efx_mtd = mtd->priv;
int rc;
rc = efx_mtd->ops->erase(mtd, erase->addr, erase->len);
if (rc == 0) {
erase->state = MTD_ERASE_DONE;
} else {
erase->state = MTD_ERASE_FAILED;
erase->fail_addr = 0xffffffff;
}
mtd_erase_callback(erase);
return rc;
}
static void efx_mtd_sync(struct mtd_info *mtd)
{
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
int rc;
rc = efx_mtd->ops->sync(mtd);
if (rc)
EFX_ERR(efx, "%s sync failed (%d)\n", efx_mtd->name, rc);
}
static void efx_mtd_remove_partition(struct efx_mtd_partition *part)
{
int rc;
for (;;) {
rc = del_mtd_device(&part->mtd);
if (rc != -EBUSY)
break;
ssleep(1);
}
WARN_ON(rc);
}
static void efx_mtd_remove_device(struct efx_mtd *efx_mtd)
{
struct efx_mtd_partition *part;
efx_for_each_partition(part, efx_mtd)
efx_mtd_remove_partition(part);
list_del(&efx_mtd->node);
kfree(efx_mtd);
}
static void efx_mtd_rename_device(struct efx_mtd *efx_mtd)
{
struct efx_mtd_partition *part;
efx_for_each_partition(part, efx_mtd)
if (efx_nic_rev(efx_mtd->efx) >= EFX_REV_SIENA_A0)
snprintf(part->name, sizeof(part->name),
"%s %s:%02x", efx_mtd->efx->name,
part->type_name, part->mcdi.fw_subtype);
else
snprintf(part->name, sizeof(part->name),
"%s %s", efx_mtd->efx->name,
part->type_name);
}
static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd)
{
struct efx_mtd_partition *part;
efx_mtd->efx = efx;
efx_mtd_rename_device(efx_mtd);
efx_for_each_partition(part, efx_mtd) {
part->mtd.writesize = 1;
part->mtd.owner = THIS_MODULE;
part->mtd.priv = efx_mtd;
part->mtd.name = part->name;
part->mtd.erase = efx_mtd_erase;
part->mtd.read = efx_mtd->ops->read;
part->mtd.write = efx_mtd->ops->write;
part->mtd.sync = efx_mtd_sync;
if (add_mtd_device(&part->mtd))
goto fail;
}
list_add(&efx_mtd->node, &efx->mtd_list);
return 0;
fail:
while (part != &efx_mtd->part[0]) {
--part;
efx_mtd_remove_partition(part);
}
/* add_mtd_device() returns 1 if the MTD table is full */
return -ENOMEM;
}
void efx_mtd_remove(struct efx_nic *efx)
{
struct efx_mtd *efx_mtd, *next;
WARN_ON(efx_dev_registered(efx));
list_for_each_entry_safe(efx_mtd, next, &efx->mtd_list, node)
efx_mtd_remove_device(efx_mtd);
}
void efx_mtd_rename(struct efx_nic *efx)
{
struct efx_mtd *efx_mtd;
ASSERT_RTNL();
list_for_each_entry(efx_mtd, &efx->mtd_list, node)
efx_mtd_rename_device(efx_mtd);
}
int efx_mtd_probe(struct efx_nic *efx)
{
if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
return siena_mtd_probe(efx);
else
return falcon_mtd_probe(efx);
}
/* Implementation of MTD operations for Falcon */
static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, u8 *buffer)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
const struct efx_spi_device *spi = efx_mtd->spi;
struct efx_nic *efx = efx_mtd->efx;
int rc;
rc = mutex_lock_interruptible(&efx->spi_lock);
if (rc)
return rc;
rc = falcon_spi_read(efx, spi, part->offset + start, len,
retlen, buffer);
mutex_unlock(&efx->spi_lock);
return rc;
}
static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
int rc;
rc = mutex_lock_interruptible(&efx->spi_lock);
if (rc)
return rc;
rc = efx_spi_erase(efx_mtd, part->offset + start, len);
mutex_unlock(&efx->spi_lock);
return rc;
}
static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, const u8 *buffer)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
const struct efx_spi_device *spi = efx_mtd->spi;
struct efx_nic *efx = efx_mtd->efx;
int rc;
rc = mutex_lock_interruptible(&efx->spi_lock);
if (rc)
return rc;
rc = falcon_spi_write(efx, spi, part->offset + start, len,
retlen, buffer);
mutex_unlock(&efx->spi_lock);
return rc;
}
static int falcon_mtd_sync(struct mtd_info *mtd)
{
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
int rc;
mutex_lock(&efx->spi_lock);
rc = efx_spi_slow_wait(efx_mtd, true);
mutex_unlock(&efx->spi_lock);
return rc;
}
static struct efx_mtd_ops falcon_mtd_ops = {
.read = falcon_mtd_read,
.erase = falcon_mtd_erase,
.write = falcon_mtd_write,
.sync = falcon_mtd_sync,
};
static int falcon_mtd_probe(struct efx_nic *efx)
{
struct efx_spi_device *spi = efx->spi_flash;
struct efx_mtd *efx_mtd;
int rc;
ASSERT_RTNL();
if (!spi || spi->size <= FALCON_FLASH_BOOTCODE_START)
return -ENODEV;
efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]),
GFP_KERNEL);
if (!efx_mtd)
return -ENOMEM;
efx_mtd->spi = spi;
efx_mtd->name = "flash";
efx_mtd->ops = &falcon_mtd_ops;
efx_mtd->n_parts = 1;
efx_mtd->part[0].mtd.type = MTD_NORFLASH;
efx_mtd->part[0].mtd.flags = MTD_CAP_NORFLASH;
efx_mtd->part[0].mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
efx_mtd->part[0].mtd.erasesize = spi->erase_size;
efx_mtd->part[0].offset = FALCON_FLASH_BOOTCODE_START;
efx_mtd->part[0].type_name = "sfc_flash_bootrom";
rc = efx_mtd_probe_device(efx, efx_mtd);
if (rc)
kfree(efx_mtd);
return rc;
}
/* Implementation of MTD operations for Siena */
static int siena_mtd_read(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, u8 *buffer)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
loff_t offset = start;
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk;
int rc = 0;
while (offset < end) {
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
rc = efx_mcdi_nvram_read(efx, part->mcdi.nvram_type, offset,
buffer, chunk);
if (rc)
goto out;
offset += chunk;
buffer += chunk;
}
out:
*retlen = offset - start;
return rc;
}
static int siena_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk = part->mtd.erasesize;
int rc = 0;
if (!part->mcdi.updating) {
rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type);
if (rc)
goto out;
part->mcdi.updating = 1;
}
/* The MCDI interface can in fact do multiple erase blocks at once;
* but erasing may be slow, so we make multiple calls here to avoid
* tripping the MCDI RPC timeout. */
while (offset < end) {
rc = efx_mcdi_nvram_erase(efx, part->mcdi.nvram_type, offset,
chunk);
if (rc)
goto out;
offset += chunk;
}
out:
return rc;
}
static int siena_mtd_write(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, const u8 *buffer)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
loff_t offset = start;
loff_t end = min_t(loff_t, start + len, mtd->size);
size_t chunk;
int rc = 0;
if (!part->mcdi.updating) {
rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type);
if (rc)
goto out;
part->mcdi.updating = 1;
}
while (offset < end) {
chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
rc = efx_mcdi_nvram_write(efx, part->mcdi.nvram_type, offset,
buffer, chunk);
if (rc)
goto out;
offset += chunk;
buffer += chunk;
}
out:
*retlen = offset - start;
return rc;
}
static int siena_mtd_sync(struct mtd_info *mtd)
{
struct efx_mtd_partition *part = to_efx_mtd_partition(mtd);
struct efx_mtd *efx_mtd = mtd->priv;
struct efx_nic *efx = efx_mtd->efx;
int rc = 0;
if (part->mcdi.updating) {
part->mcdi.updating = 0;
rc = efx_mcdi_nvram_update_finish(efx, part->mcdi.nvram_type);
}
return rc;
}
static struct efx_mtd_ops siena_mtd_ops = {
.read = siena_mtd_read,
.erase = siena_mtd_erase,
.write = siena_mtd_write,
.sync = siena_mtd_sync,
};
struct siena_nvram_type_info {
int port;
const char *name;
};
static struct siena_nvram_type_info siena_nvram_types[] = {
[MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
[MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
[MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
[MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
[MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
[MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
[MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
[MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
[MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
[MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
[MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
[MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
};
static int siena_mtd_probe_partition(struct efx_nic *efx,
struct efx_mtd *efx_mtd,
unsigned int part_id,
unsigned int type)
{
struct efx_mtd_partition *part = &efx_mtd->part[part_id];
struct siena_nvram_type_info *info;
size_t size, erase_size;
bool protected;
int rc;
if (type >= ARRAY_SIZE(siena_nvram_types))
return -ENODEV;
info = &siena_nvram_types[type];
if (info->port != efx_port_num(efx))
return -ENODEV;
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
if (rc)
return rc;
if (protected)
return -ENODEV; /* hide it */
part->mcdi.nvram_type = type;
part->type_name = info->name;
part->mtd.type = MTD_NORFLASH;
part->mtd.flags = MTD_CAP_NORFLASH;
part->mtd.size = size;
part->mtd.erasesize = erase_size;
return 0;
}
static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
struct efx_mtd *efx_mtd)
{
struct efx_mtd_partition *part;
uint16_t fw_subtype_list[MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN /
sizeof(uint16_t)];
int rc;
rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list);
if (rc)
return rc;
efx_for_each_partition(part, efx_mtd)
part->mcdi.fw_subtype = fw_subtype_list[part->mcdi.nvram_type];
return 0;
}
static int siena_mtd_probe(struct efx_nic *efx)
{
struct efx_mtd *efx_mtd;
int rc = -ENODEV;
u32 nvram_types;
unsigned int type;
ASSERT_RTNL();
rc = efx_mcdi_nvram_types(efx, &nvram_types);
if (rc)
return rc;
efx_mtd = kzalloc(sizeof(*efx_mtd) +
hweight32(nvram_types) * sizeof(efx_mtd->part[0]),
GFP_KERNEL);
if (!efx_mtd)
return -ENOMEM;
efx_mtd->name = "Siena NVRAM manager";
efx_mtd->ops = &siena_mtd_ops;
type = 0;
efx_mtd->n_parts = 0;
while (nvram_types != 0) {
if (nvram_types & 1) {
rc = siena_mtd_probe_partition(efx, efx_mtd,
efx_mtd->n_parts, type);
if (rc == 0)
efx_mtd->n_parts++;
else if (rc != -ENODEV)
goto fail;
}
type++;
nvram_types >>= 1;
}
rc = siena_mtd_get_fw_subtypes(efx, efx_mtd);
if (rc)
goto fail;
rc = efx_mtd_probe_device(efx, efx_mtd);
fail:
if (rc)
kfree(efx_mtd);
return rc;
}