tmp_suning_uos_patched/fs/hfs/super.c
Theodore Ts'o 02b9984d64 fs: push sync_filesystem() down to the file system's remount_fs()
Previously, the no-op "mount -o mount /dev/xxx" operation when the
file system is already mounted read-write causes an implied,
unconditional syncfs().  This seems pretty stupid, and it's certainly
documented or guaraunteed to do this, nor is it particularly useful,
except in the case where the file system was mounted rw and is getting
remounted read-only.

However, it's possible that there might be some file systems that are
actually depending on this behavior.  In most file systems, it's
probably fine to only call sync_filesystem() when transitioning from
read-write to read-only, and there are some file systems where this is
not needed at all (for example, for a pseudo-filesystem or something
like romfs).

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-fsdevel@vger.kernel.org
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: Jan Kara <jack@suse.cz>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Anders Larsen <al@alarsen.net>
Cc: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Cc: Petr Vandrovec <petr@vandrovec.name>
Cc: xfs@oss.sgi.com
Cc: linux-btrfs@vger.kernel.org
Cc: linux-cifs@vger.kernel.org
Cc: samba-technical@lists.samba.org
Cc: codalist@coda.cs.cmu.edu
Cc: linux-ext4@vger.kernel.org
Cc: linux-f2fs-devel@lists.sourceforge.net
Cc: fuse-devel@lists.sourceforge.net
Cc: cluster-devel@redhat.com
Cc: linux-mtd@lists.infradead.org
Cc: jfs-discussion@lists.sourceforge.net
Cc: linux-nfs@vger.kernel.org
Cc: linux-nilfs@vger.kernel.org
Cc: linux-ntfs-dev@lists.sourceforge.net
Cc: ocfs2-devel@oss.oracle.com
Cc: reiserfs-devel@vger.kernel.org
2014-03-13 10:14:33 -04:00

509 lines
12 KiB
C

/*
* linux/fs/hfs/super.c
*
* Copyright (C) 1995-1997 Paul H. Hargrove
* (C) 2003 Ardis Technologies <roman@ardistech.com>
* This file may be distributed under the terms of the GNU General Public License.
*
* This file contains hfs_read_super(), some of the super_ops and
* init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in
* inode.c since they deal with inodes.
*
* Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
*/
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/mount.h>
#include <linux/init.h>
#include <linux/nls.h>
#include <linux/parser.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/vfs.h>
#include "hfs_fs.h"
#include "btree.h"
static struct kmem_cache *hfs_inode_cachep;
MODULE_LICENSE("GPL");
static int hfs_sync_fs(struct super_block *sb, int wait)
{
hfs_mdb_commit(sb);
return 0;
}
/*
* hfs_put_super()
*
* This is the put_super() entry in the super_operations structure for
* HFS filesystems. The purpose is to release the resources
* associated with the superblock sb.
*/
static void hfs_put_super(struct super_block *sb)
{
cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
hfs_mdb_close(sb);
/* release the MDB's resources */
hfs_mdb_put(sb);
}
static void flush_mdb(struct work_struct *work)
{
struct hfs_sb_info *sbi;
struct super_block *sb;
sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
sb = sbi->sb;
spin_lock(&sbi->work_lock);
sbi->work_queued = 0;
spin_unlock(&sbi->work_lock);
hfs_mdb_commit(sb);
}
void hfs_mark_mdb_dirty(struct super_block *sb)
{
struct hfs_sb_info *sbi = HFS_SB(sb);
unsigned long delay;
if (sb->s_flags & MS_RDONLY)
return;
spin_lock(&sbi->work_lock);
if (!sbi->work_queued) {
delay = msecs_to_jiffies(dirty_writeback_interval * 10);
queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
sbi->work_queued = 1;
}
spin_unlock(&sbi->work_lock);
}
/*
* hfs_statfs()
*
* This is the statfs() entry in the super_operations structure for
* HFS filesystems. The purpose is to return various data about the
* filesystem.
*
* changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
*/
static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
buf->f_type = HFS_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
buf->f_bavail = buf->f_bfree;
buf->f_files = HFS_SB(sb)->fs_ablocks;
buf->f_ffree = HFS_SB(sb)->free_ablocks;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
buf->f_namelen = HFS_NAMELEN;
return 0;
}
static int hfs_remount(struct super_block *sb, int *flags, char *data)
{
sync_filesystem(sb);
*flags |= MS_NODIRATIME;
if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
return 0;
if (!(*flags & MS_RDONLY)) {
if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended. leaving read-only.\n");
sb->s_flags |= MS_RDONLY;
*flags |= MS_RDONLY;
} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
pr_warn("filesystem is marked locked, leaving read-only.\n");
sb->s_flags |= MS_RDONLY;
*flags |= MS_RDONLY;
}
}
return 0;
}
static int hfs_show_options(struct seq_file *seq, struct dentry *root)
{
struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
seq_printf(seq, ",uid=%u,gid=%u",
from_kuid_munged(&init_user_ns, sbi->s_uid),
from_kgid_munged(&init_user_ns, sbi->s_gid));
if (sbi->s_file_umask != 0133)
seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
if (sbi->s_dir_umask != 0022)
seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
if (sbi->part >= 0)
seq_printf(seq, ",part=%u", sbi->part);
if (sbi->session >= 0)
seq_printf(seq, ",session=%u", sbi->session);
if (sbi->nls_disk)
seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
if (sbi->nls_io)
seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
if (sbi->s_quiet)
seq_printf(seq, ",quiet");
return 0;
}
static struct inode *hfs_alloc_inode(struct super_block *sb)
{
struct hfs_inode_info *i;
i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
return i ? &i->vfs_inode : NULL;
}
static void hfs_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
}
static void hfs_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, hfs_i_callback);
}
static const struct super_operations hfs_super_operations = {
.alloc_inode = hfs_alloc_inode,
.destroy_inode = hfs_destroy_inode,
.write_inode = hfs_write_inode,
.evict_inode = hfs_evict_inode,
.put_super = hfs_put_super,
.sync_fs = hfs_sync_fs,
.statfs = hfs_statfs,
.remount_fs = hfs_remount,
.show_options = hfs_show_options,
};
enum {
opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
opt_part, opt_session, opt_type, opt_creator, opt_quiet,
opt_codepage, opt_iocharset,
opt_err
};
static const match_table_t tokens = {
{ opt_uid, "uid=%u" },
{ opt_gid, "gid=%u" },
{ opt_umask, "umask=%o" },
{ opt_file_umask, "file_umask=%o" },
{ opt_dir_umask, "dir_umask=%o" },
{ opt_part, "part=%u" },
{ opt_session, "session=%u" },
{ opt_type, "type=%s" },
{ opt_creator, "creator=%s" },
{ opt_quiet, "quiet" },
{ opt_codepage, "codepage=%s" },
{ opt_iocharset, "iocharset=%s" },
{ opt_err, NULL }
};
static inline int match_fourchar(substring_t *arg, u32 *result)
{
if (arg->to - arg->from != 4)
return -EINVAL;
memcpy(result, arg->from, 4);
return 0;
}
/*
* parse_options()
*
* adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
* This function is called by hfs_read_super() to parse the mount options.
*/
static int parse_options(char *options, struct hfs_sb_info *hsb)
{
char *p;
substring_t args[MAX_OPT_ARGS];
int tmp, token;
/* initialize the sb with defaults */
hsb->s_uid = current_uid();
hsb->s_gid = current_gid();
hsb->s_file_umask = 0133;
hsb->s_dir_umask = 0022;
hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
hsb->s_quiet = 0;
hsb->part = -1;
hsb->session = -1;
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case opt_uid:
if (match_int(&args[0], &tmp)) {
pr_err("uid requires an argument\n");
return 0;
}
hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
if (!uid_valid(hsb->s_uid)) {
pr_err("invalid uid %d\n", tmp);
return 0;
}
break;
case opt_gid:
if (match_int(&args[0], &tmp)) {
pr_err("gid requires an argument\n");
return 0;
}
hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
if (!gid_valid(hsb->s_gid)) {
pr_err("invalid gid %d\n", tmp);
return 0;
}
break;
case opt_umask:
if (match_octal(&args[0], &tmp)) {
pr_err("umask requires a value\n");
return 0;
}
hsb->s_file_umask = (umode_t)tmp;
hsb->s_dir_umask = (umode_t)tmp;
break;
case opt_file_umask:
if (match_octal(&args[0], &tmp)) {
pr_err("file_umask requires a value\n");
return 0;
}
hsb->s_file_umask = (umode_t)tmp;
break;
case opt_dir_umask:
if (match_octal(&args[0], &tmp)) {
pr_err("dir_umask requires a value\n");
return 0;
}
hsb->s_dir_umask = (umode_t)tmp;
break;
case opt_part:
if (match_int(&args[0], &hsb->part)) {
pr_err("part requires an argument\n");
return 0;
}
break;
case opt_session:
if (match_int(&args[0], &hsb->session)) {
pr_err("session requires an argument\n");
return 0;
}
break;
case opt_type:
if (match_fourchar(&args[0], &hsb->s_type)) {
pr_err("type requires a 4 character value\n");
return 0;
}
break;
case opt_creator:
if (match_fourchar(&args[0], &hsb->s_creator)) {
pr_err("creator requires a 4 character value\n");
return 0;
}
break;
case opt_quiet:
hsb->s_quiet = 1;
break;
case opt_codepage:
if (hsb->nls_disk) {
pr_err("unable to change codepage\n");
return 0;
}
p = match_strdup(&args[0]);
if (p)
hsb->nls_disk = load_nls(p);
if (!hsb->nls_disk) {
pr_err("unable to load codepage \"%s\"\n", p);
kfree(p);
return 0;
}
kfree(p);
break;
case opt_iocharset:
if (hsb->nls_io) {
pr_err("unable to change iocharset\n");
return 0;
}
p = match_strdup(&args[0]);
if (p)
hsb->nls_io = load_nls(p);
if (!hsb->nls_io) {
pr_err("unable to load iocharset \"%s\"\n", p);
kfree(p);
return 0;
}
kfree(p);
break;
default:
return 0;
}
}
if (hsb->nls_disk && !hsb->nls_io) {
hsb->nls_io = load_nls_default();
if (!hsb->nls_io) {
pr_err("unable to load default iocharset\n");
return 0;
}
}
hsb->s_dir_umask &= 0777;
hsb->s_file_umask &= 0577;
return 1;
}
/*
* hfs_read_super()
*
* This is the function that is responsible for mounting an HFS
* filesystem. It performs all the tasks necessary to get enough data
* from the disk to read the root inode. This includes parsing the
* mount options, dealing with Macintosh partitions, reading the
* superblock and the allocation bitmap blocks, calling
* hfs_btree_init() to get the necessary data about the extents and
* catalog B-trees and, finally, reading the root inode into memory.
*/
static int hfs_fill_super(struct super_block *sb, void *data, int silent)
{
struct hfs_sb_info *sbi;
struct hfs_find_data fd;
hfs_cat_rec rec;
struct inode *root_inode;
int res;
sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sbi->sb = sb;
sb->s_fs_info = sbi;
spin_lock_init(&sbi->work_lock);
INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
res = -EINVAL;
if (!parse_options((char *)data, sbi)) {
pr_err("unable to parse mount options\n");
goto bail;
}
sb->s_op = &hfs_super_operations;
sb->s_flags |= MS_NODIRATIME;
mutex_init(&sbi->bitmap_lock);
res = hfs_mdb_get(sb);
if (res) {
if (!silent)
pr_warn("can't find a HFS filesystem on dev %s\n",
hfs_mdb_name(sb));
res = -EINVAL;
goto bail;
}
/* try to get the root inode */
res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
if (res)
goto bail_no_root;
res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
if (!res) {
if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
res = -EIO;
goto bail;
}
hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
}
if (res) {
hfs_find_exit(&fd);
goto bail_no_root;
}
res = -EINVAL;
root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
hfs_find_exit(&fd);
if (!root_inode)
goto bail_no_root;
sb->s_d_op = &hfs_dentry_operations;
res = -ENOMEM;
sb->s_root = d_make_root(root_inode);
if (!sb->s_root)
goto bail_no_root;
/* everything's okay */
return 0;
bail_no_root:
pr_err("get root inode failed\n");
bail:
hfs_mdb_put(sb);
return res;
}
static struct dentry *hfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
}
static struct file_system_type hfs_fs_type = {
.owner = THIS_MODULE,
.name = "hfs",
.mount = hfs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("hfs");
static void hfs_init_once(void *p)
{
struct hfs_inode_info *i = p;
inode_init_once(&i->vfs_inode);
}
static int __init init_hfs_fs(void)
{
int err;
hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
hfs_init_once);
if (!hfs_inode_cachep)
return -ENOMEM;
err = register_filesystem(&hfs_fs_type);
if (err)
kmem_cache_destroy(hfs_inode_cachep);
return err;
}
static void __exit exit_hfs_fs(void)
{
unregister_filesystem(&hfs_fs_type);
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(hfs_inode_cachep);
}
module_init(init_hfs_fs)
module_exit(exit_hfs_fs)