tmp_suning_uos_patched/drivers/ata/pata_optidma.c
Tejun Heo 2eab80ac0c [PATCH] libata: kill unnecessary sht->max_sectors initializations
sht->max_sectors is overrided unconditionally in ->slave_configure.
There's no reason to set it to any value.

Signed-off-by: Tejun Heo <htejun@gmail.com>
2006-12-03 17:56:22 +09:00

549 lines
14 KiB
C

/*
* pata_optidma.c - Opti DMA PATA for new ATA layer
* (C) 2006 Red Hat Inc
* Alan Cox <alan@redhat.com>
*
* The Opti DMA controllers are related to the older PIO PCI controllers
* and indeed the VLB ones. The main differences are that the timing
* numbers are now based off PCI clocks not VLB and differ, and that
* MWDMA is supported.
*
* This driver should support Viper-N+, FireStar, FireStar Plus.
*
* These devices support virtual DMA for read (aka the CS5520). Later
* chips support UDMA33, but only if the rest of the board logic does,
* so you have to get this right. We don't support the virtual DMA
* but we do handle UDMA.
*
* Bits that are worth knowing
* Most control registers are shadowed into I/O registers
* 0x1F5 bit 0 tells you if the PCI/VLB clock is 33 or 25Mhz
* Virtual DMA registers *move* between rev 0x02 and rev 0x10
* UDMA requires a 66MHz FSB
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "pata_optidma"
#define DRV_VERSION "0.2.3"
enum {
READ_REG = 0, /* index of Read cycle timing register */
WRITE_REG = 1, /* index of Write cycle timing register */
CNTRL_REG = 3, /* index of Control register */
STRAP_REG = 5, /* index of Strap register */
MISC_REG = 6 /* index of Miscellaneous register */
};
static int pci_clock; /* 0 = 33 1 = 25 */
/**
* optidma_pre_reset - probe begin
* @ap: ATA port
*
* Set up cable type and use generic probe init
*/
static int optidma_pre_reset(struct ata_port *ap)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
static const struct pci_bits optidma_enable_bits = {
0x40, 1, 0x08, 0x00
};
if (ap->port_no && !pci_test_config_bits(pdev, &optidma_enable_bits))
return -ENOENT;
ap->cbl = ATA_CBL_PATA40;
return ata_std_prereset(ap);
}
/**
* optidma_probe_reset - probe reset
* @ap: ATA port
*
* Perform the ATA probe and bus reset sequence plus specific handling
* for this hardware. The Opti needs little handling - we have no UDMA66
* capability that needs cable detection. All we must do is check the port
* is enabled.
*/
static void optidma_error_handler(struct ata_port *ap)
{
ata_bmdma_drive_eh(ap, optidma_pre_reset, ata_std_softreset, NULL, ata_std_postreset);
}
/**
* optidma_unlock - unlock control registers
* @ap: ATA port
*
* Unlock the control register block for this adapter. Registers must not
* be unlocked in a situation where libata might look at them.
*/
static void optidma_unlock(struct ata_port *ap)
{
unsigned long regio = ap->ioaddr.cmd_addr;
/* These 3 unlock the control register access */
inw(regio + 1);
inw(regio + 1);
outb(3, regio + 2);
}
/**
* optidma_lock - issue temporary relock
* @ap: ATA port
*
* Re-lock the configuration register settings.
*/
static void optidma_lock(struct ata_port *ap)
{
unsigned long regio = ap->ioaddr.cmd_addr;
/* Relock */
outb(0x83, regio + 2);
}
/**
* optidma_set_mode - set mode data
* @ap: ATA interface
* @adev: ATA device
* @mode: Mode to set
*
* Called to do the DMA or PIO mode setup. Timing numbers are all
* pre computed to keep the code clean. There are two tables depending
* on the hardware clock speed.
*
* WARNING: While we do this the IDE registers vanish. If we take an
* IRQ here we depend on the host set locking to avoid catastrophe.
*/
static void optidma_set_mode(struct ata_port *ap, struct ata_device *adev, u8 mode)
{
struct ata_device *pair = ata_dev_pair(adev);
int pio = adev->pio_mode - XFER_PIO_0;
int dma = adev->dma_mode - XFER_MW_DMA_0;
unsigned long regio = ap->ioaddr.cmd_addr;
u8 addr;
/* Address table precomputed with a DCLK of 2 */
static const u8 addr_timing[2][5] = {
{ 0x30, 0x20, 0x20, 0x10, 0x10 },
{ 0x20, 0x20, 0x10, 0x10, 0x10 }
};
static const u8 data_rec_timing[2][5] = {
{ 0x59, 0x46, 0x30, 0x20, 0x20 },
{ 0x46, 0x32, 0x20, 0x20, 0x10 }
};
static const u8 dma_data_rec_timing[2][3] = {
{ 0x76, 0x20, 0x20 },
{ 0x54, 0x20, 0x10 }
};
/* Switch from IDE to control mode */
optidma_unlock(ap);
/*
* As with many controllers the address setup time is shared
* and must suit both devices if present. FIXME: Check if we
* need to look at slowest of PIO/DMA mode of either device
*/
if (mode >= XFER_MW_DMA_0)
addr = 0;
else
addr = addr_timing[pci_clock][pio];
if (pair) {
u8 pair_addr;
/* Hardware constraint */
if (pair->dma_mode)
pair_addr = 0;
else
pair_addr = addr_timing[pci_clock][pair->pio_mode - XFER_PIO_0];
if (pair_addr > addr)
addr = pair_addr;
}
/* Commence primary programming sequence */
/* First we load the device number into the timing select */
outb(adev->devno, regio + MISC_REG);
/* Now we load the data timings into read data/write data */
if (mode < XFER_MW_DMA_0) {
outb(data_rec_timing[pci_clock][pio], regio + READ_REG);
outb(data_rec_timing[pci_clock][pio], regio + WRITE_REG);
} else if (mode < XFER_UDMA_0) {
outb(dma_data_rec_timing[pci_clock][dma], regio + READ_REG);
outb(dma_data_rec_timing[pci_clock][dma], regio + WRITE_REG);
}
/* Finally we load the address setup into the misc register */
outb(addr | adev->devno, regio + MISC_REG);
/* Programming sequence complete, timing 0 dev 0, timing 1 dev 1 */
outb(0x85, regio + CNTRL_REG);
/* Switch back to IDE mode */
optidma_lock(ap);
/* Note: at this point our programming is incomplete. We are
not supposed to program PCI 0x43 "things we hacked onto the chip"
until we've done both sets of PIO/DMA timings */
}
/**
* optiplus_set_mode - DMA setup for Firestar Plus
* @ap: ATA port
* @adev: device
* @mode: desired mode
*
* The Firestar plus has additional UDMA functionality for UDMA0-2 and
* requires we do some additional work. Because the base work we must do
* is mostly shared we wrap the Firestar setup functionality in this
* one
*/
static void optiplus_set_mode(struct ata_port *ap, struct ata_device *adev, u8 mode)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u8 udcfg;
u8 udslave;
int dev2 = 2 * adev->devno;
int unit = 2 * ap->port_no + adev->devno;
int udma = mode - XFER_UDMA_0;
pci_read_config_byte(pdev, 0x44, &udcfg);
if (mode <= XFER_UDMA_0) {
udcfg &= ~(1 << unit);
optidma_set_mode(ap, adev, adev->dma_mode);
} else {
udcfg |= (1 << unit);
if (ap->port_no) {
pci_read_config_byte(pdev, 0x45, &udslave);
udslave &= ~(0x03 << dev2);
udslave |= (udma << dev2);
pci_write_config_byte(pdev, 0x45, udslave);
} else {
udcfg &= ~(0x30 << dev2);
udcfg |= (udma << dev2);
}
}
pci_write_config_byte(pdev, 0x44, udcfg);
}
/**
* optidma_set_pio_mode - PIO setup callback
* @ap: ATA port
* @adev: Device
*
* The libata core provides separate functions for handling PIO and
* DMA programming. The architecture of the Firestar makes it easier
* for us to have a common function so we provide wrappers
*/
static void optidma_set_pio_mode(struct ata_port *ap, struct ata_device *adev)
{
optidma_set_mode(ap, adev, adev->pio_mode);
}
/**
* optidma_set_dma_mode - DMA setup callback
* @ap: ATA port
* @adev: Device
*
* The libata core provides separate functions for handling PIO and
* DMA programming. The architecture of the Firestar makes it easier
* for us to have a common function so we provide wrappers
*/
static void optidma_set_dma_mode(struct ata_port *ap, struct ata_device *adev)
{
optidma_set_mode(ap, adev, adev->dma_mode);
}
/**
* optiplus_set_pio_mode - PIO setup callback
* @ap: ATA port
* @adev: Device
*
* The libata core provides separate functions for handling PIO and
* DMA programming. The architecture of the Firestar makes it easier
* for us to have a common function so we provide wrappers
*/
static void optiplus_set_pio_mode(struct ata_port *ap, struct ata_device *adev)
{
optiplus_set_mode(ap, adev, adev->pio_mode);
}
/**
* optiplus_set_dma_mode - DMA setup callback
* @ap: ATA port
* @adev: Device
*
* The libata core provides separate functions for handling PIO and
* DMA programming. The architecture of the Firestar makes it easier
* for us to have a common function so we provide wrappers
*/
static void optiplus_set_dma_mode(struct ata_port *ap, struct ata_device *adev)
{
optiplus_set_mode(ap, adev, adev->dma_mode);
}
/**
* optidma_make_bits - PCI setup helper
* @adev: ATA device
*
* Turn the ATA device setup into PCI configuration bits
* for register 0x43 and return the two bits needed.
*/
static u8 optidma_make_bits43(struct ata_device *adev)
{
static const u8 bits43[5] = {
0, 0, 0, 1, 2
};
if (!ata_dev_enabled(adev))
return 0;
if (adev->dma_mode)
return adev->dma_mode - XFER_MW_DMA_0;
return bits43[adev->pio_mode - XFER_PIO_0];
}
/**
* optidma_post_set_mode - finalize PCI setup
* @ap: port to set up
*
* Finalise the configuration by writing the nibble of extra bits
* of data into the chip.
*/
static void optidma_post_set_mode(struct ata_port *ap)
{
u8 r;
int nybble = 4 * ap->port_no;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
pci_read_config_byte(pdev, 0x43, &r);
r &= (0x0F << nybble);
r |= (optidma_make_bits43(&ap->device[0]) +
(optidma_make_bits43(&ap->device[0]) << 2)) << nybble;
pci_write_config_byte(pdev, 0x43, r);
}
static struct scsi_host_template optidma_sht = {
.module = THIS_MODULE,
.name = DRV_NAME,
.ioctl = ata_scsi_ioctl,
.queuecommand = ata_scsi_queuecmd,
.can_queue = ATA_DEF_QUEUE,
.this_id = ATA_SHT_THIS_ID,
.sg_tablesize = LIBATA_MAX_PRD,
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
.emulated = ATA_SHT_EMULATED,
.use_clustering = ATA_SHT_USE_CLUSTERING,
.proc_name = DRV_NAME,
.dma_boundary = ATA_DMA_BOUNDARY,
.slave_configure = ata_scsi_slave_config,
.slave_destroy = ata_scsi_slave_destroy,
.bios_param = ata_std_bios_param,
.resume = ata_scsi_device_resume,
.suspend = ata_scsi_device_suspend,
};
static struct ata_port_operations optidma_port_ops = {
.port_disable = ata_port_disable,
.set_piomode = optidma_set_pio_mode,
.set_dmamode = optidma_set_dma_mode,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.freeze = ata_bmdma_freeze,
.thaw = ata_bmdma_thaw,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.error_handler = optidma_error_handler,
.post_set_mode = optidma_post_set_mode,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_prep = ata_qc_prep,
.qc_issue = ata_qc_issue_prot,
.data_xfer = ata_pio_data_xfer,
.irq_handler = ata_interrupt,
.irq_clear = ata_bmdma_irq_clear,
.port_start = ata_port_start,
.port_stop = ata_port_stop,
.host_stop = ata_host_stop
};
static struct ata_port_operations optiplus_port_ops = {
.port_disable = ata_port_disable,
.set_piomode = optiplus_set_pio_mode,
.set_dmamode = optiplus_set_dma_mode,
.tf_load = ata_tf_load,
.tf_read = ata_tf_read,
.check_status = ata_check_status,
.exec_command = ata_exec_command,
.dev_select = ata_std_dev_select,
.freeze = ata_bmdma_freeze,
.thaw = ata_bmdma_thaw,
.post_internal_cmd = ata_bmdma_post_internal_cmd,
.error_handler = optidma_error_handler,
.post_set_mode = optidma_post_set_mode,
.bmdma_setup = ata_bmdma_setup,
.bmdma_start = ata_bmdma_start,
.bmdma_stop = ata_bmdma_stop,
.bmdma_status = ata_bmdma_status,
.qc_prep = ata_qc_prep,
.qc_issue = ata_qc_issue_prot,
.data_xfer = ata_pio_data_xfer,
.irq_handler = ata_interrupt,
.irq_clear = ata_bmdma_irq_clear,
.port_start = ata_port_start,
.port_stop = ata_port_stop,
.host_stop = ata_host_stop
};
/**
* optiplus_with_udma - Look for UDMA capable setup
* @pdev; ATA controller
*/
static int optiplus_with_udma(struct pci_dev *pdev)
{
u8 r;
int ret = 0;
int ioport = 0x22;
struct pci_dev *dev1;
/* Find function 1 */
dev1 = pci_get_device(0x1045, 0xC701, NULL);
if(dev1 == NULL)
return 0;
/* Rev must be >= 0x10 */
pci_read_config_byte(dev1, 0x08, &r);
if (r < 0x10)
goto done_nomsg;
/* Read the chipset system configuration to check our mode */
pci_read_config_byte(dev1, 0x5F, &r);
ioport |= (r << 8);
outb(0x10, ioport);
/* Must be 66Mhz sync */
if ((inb(ioport + 2) & 1) == 0)
goto done;
/* Check the ATA arbitration/timing is suitable */
pci_read_config_byte(pdev, 0x42, &r);
if ((r & 0x36) != 0x36)
goto done;
pci_read_config_byte(dev1, 0x52, &r);
if (r & 0x80) /* IDEDIR disabled */
ret = 1;
done:
printk(KERN_WARNING "UDMA not supported in this configuration.\n");
done_nomsg: /* Wrong chip revision */
pci_dev_put(dev1);
return ret;
}
static int optidma_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
static struct ata_port_info info_82c700 = {
.sht = &optidma_sht,
.flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST,
.pio_mask = 0x1f,
.mwdma_mask = 0x07,
.port_ops = &optidma_port_ops
};
static struct ata_port_info info_82c700_udma = {
.sht = &optidma_sht,
.flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST,
.pio_mask = 0x1f,
.mwdma_mask = 0x07,
.udma_mask = 0x07,
.port_ops = &optiplus_port_ops
};
static struct ata_port_info *port_info[2];
struct ata_port_info *info = &info_82c700;
static int printed_version;
if (!printed_version++)
dev_printk(KERN_DEBUG, &dev->dev, "version " DRV_VERSION "\n");
/* Fixed location chipset magic */
inw(0x1F1);
inw(0x1F1);
pci_clock = inb(0x1F5) & 1; /* 0 = 33Mhz, 1 = 25Mhz */
if (optiplus_with_udma(dev))
info = &info_82c700_udma;
port_info[0] = port_info[1] = info;
return ata_pci_init_one(dev, port_info, 2);
}
static const struct pci_device_id optidma[] = {
{ PCI_VDEVICE(OPTI, 0xD568), }, /* Opti 82C700 */
{ },
};
static struct pci_driver optidma_pci_driver = {
.name = DRV_NAME,
.id_table = optidma,
.probe = optidma_init_one,
.remove = ata_pci_remove_one,
.suspend = ata_pci_device_suspend,
.resume = ata_pci_device_resume,
};
static int __init optidma_init(void)
{
return pci_register_driver(&optidma_pci_driver);
}
static void __exit optidma_exit(void)
{
pci_unregister_driver(&optidma_pci_driver);
}
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("low-level driver for Opti Firestar/Firestar Plus");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, optidma);
MODULE_VERSION(DRV_VERSION);
module_init(optidma_init);
module_exit(optidma_exit);