7053f80d96
The previous commit reduced the amount of code that is run before we
setup a paca. However there are still a few remaining functions that
run with no paca, or worse, with an arbitrary value in r13 that will
be used as a paca pointer.
In particular the stack protector canary is stored in the paca, so if
stack protector is activated for any of these functions we will read
the stack canary from wherever r13 points. If r13 happens to point
outside of memory we will get a machine check / checkstop.
For example if we modify initialise_paca() to trigger stack
protection, and then boot in the mambo simulator with r13 poisoned in
skiboot before calling the kernel:
DEBUG: 19952232: (19952232): INSTRUCTION: PC=0xC0000000191FC1E8: [0x3C4C006D]: addis r2,r12,0x6D [fetch]
DEBUG: 19952236: (19952236): INSTRUCTION: PC=0xC00000001807EAD8: [0x7D8802A6]: mflr r12 [fetch]
FATAL ERROR: 19952276: (19952276): Check Stop for 0:0: Machine Check with ME bit of MSR off
DEBUG: 19952276: (19952276): INSTRUCTION: PC=0xC0000000191FCA7C: [0xE90D0CF8]: ld r8,0xCF8(r13) [Instruction Failed]
INFO: 19952276: (19952277): ** Execution stopped: Mambo Error, Machine Check Stop, **
systemsim % bt
pc: 0xC0000000191FCA7C initialise_paca+0x54
lr: 0xC0000000191FC22C early_setup+0x44
stack:0x00000000198CBED0 0x0 +0x0
stack:0x00000000198CBF00 0xC0000000191FC22C early_setup+0x44
stack:0x00000000198CBF90 0x1801C968 +0x1801C968
So annotate the relevant functions to ensure stack protection is never
enabled for them.
Fixes: 06ec27aea9
("powerpc/64: add stack protector support")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200320032116.1024773-2-mpe@ellerman.id.au
987 lines
25 KiB
C
987 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Common boot and setup code.
|
|
*
|
|
* Copyright (C) 2001 PPC64 Team, IBM Corp
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/console.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_8250.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/nmi.h>
|
|
|
|
#include <asm/debugfs.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/time.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/dt_cpu_ftrs.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/nvram.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/serial.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/xmon.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/livepatch.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/feature-fixups.h>
|
|
#include <asm/kup.h>
|
|
#include <asm/early_ioremap.h>
|
|
|
|
#include "setup.h"
|
|
|
|
int spinning_secondaries;
|
|
u64 ppc64_pft_size;
|
|
|
|
struct ppc64_caches ppc64_caches = {
|
|
.l1d = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6,
|
|
},
|
|
.l1i = {
|
|
.block_size = 0x40,
|
|
.log_block_size = 6
|
|
},
|
|
};
|
|
EXPORT_SYMBOL_GPL(ppc64_caches);
|
|
|
|
#if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
|
|
void __init setup_tlb_core_data(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
int first = cpu_first_thread_sibling(cpu);
|
|
|
|
/*
|
|
* If we boot via kdump on a non-primary thread,
|
|
* make sure we point at the thread that actually
|
|
* set up this TLB.
|
|
*/
|
|
if (cpu_first_thread_sibling(boot_cpuid) == first)
|
|
first = boot_cpuid;
|
|
|
|
paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
|
|
|
|
/*
|
|
* If we have threads, we need either tlbsrx.
|
|
* or e6500 tablewalk mode, or else TLB handlers
|
|
* will be racy and could produce duplicate entries.
|
|
* Should we panic instead?
|
|
*/
|
|
WARN_ONCE(smt_enabled_at_boot >= 2 &&
|
|
!mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
|
|
book3e_htw_mode != PPC_HTW_E6500,
|
|
"%s: unsupported MMU configuration\n", __func__);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static char *smt_enabled_cmdline;
|
|
|
|
/* Look for ibm,smt-enabled OF option */
|
|
void __init check_smt_enabled(void)
|
|
{
|
|
struct device_node *dn;
|
|
const char *smt_option;
|
|
|
|
/* Default to enabling all threads */
|
|
smt_enabled_at_boot = threads_per_core;
|
|
|
|
/* Allow the command line to overrule the OF option */
|
|
if (smt_enabled_cmdline) {
|
|
if (!strcmp(smt_enabled_cmdline, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_enabled_cmdline, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
else {
|
|
int smt;
|
|
int rc;
|
|
|
|
rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
|
|
if (!rc)
|
|
smt_enabled_at_boot =
|
|
min(threads_per_core, smt);
|
|
}
|
|
} else {
|
|
dn = of_find_node_by_path("/options");
|
|
if (dn) {
|
|
smt_option = of_get_property(dn, "ibm,smt-enabled",
|
|
NULL);
|
|
|
|
if (smt_option) {
|
|
if (!strcmp(smt_option, "on"))
|
|
smt_enabled_at_boot = threads_per_core;
|
|
else if (!strcmp(smt_option, "off"))
|
|
smt_enabled_at_boot = 0;
|
|
}
|
|
|
|
of_node_put(dn);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Look for smt-enabled= cmdline option */
|
|
static int __init early_smt_enabled(char *p)
|
|
{
|
|
smt_enabled_cmdline = p;
|
|
return 0;
|
|
}
|
|
early_param("smt-enabled", early_smt_enabled);
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/** Fix up paca fields required for the boot cpu */
|
|
static void __init fixup_boot_paca(void)
|
|
{
|
|
/* The boot cpu is started */
|
|
get_paca()->cpu_start = 1;
|
|
/* Allow percpu accesses to work until we setup percpu data */
|
|
get_paca()->data_offset = 0;
|
|
/* Mark interrupts disabled in PACA */
|
|
irq_soft_mask_set(IRQS_DISABLED);
|
|
}
|
|
|
|
static void __init configure_exceptions(void)
|
|
{
|
|
/*
|
|
* Setup the trampolines from the lowmem exception vectors
|
|
* to the kdump kernel when not using a relocatable kernel.
|
|
*/
|
|
setup_kdump_trampoline();
|
|
|
|
/* Under a PAPR hypervisor, we need hypercalls */
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
/* Enable AIL if possible */
|
|
pseries_enable_reloc_on_exc();
|
|
|
|
/*
|
|
* Tell the hypervisor that we want our exceptions to
|
|
* be taken in little endian mode.
|
|
*
|
|
* We don't call this for big endian as our calling convention
|
|
* makes us always enter in BE, and the call may fail under
|
|
* some circumstances with kdump.
|
|
*/
|
|
#ifdef __LITTLE_ENDIAN__
|
|
pseries_little_endian_exceptions();
|
|
#endif
|
|
} else {
|
|
/* Set endian mode using OPAL */
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
opal_configure_cores();
|
|
|
|
/* AIL on native is done in cpu_ready_for_interrupts() */
|
|
}
|
|
}
|
|
|
|
static void cpu_ready_for_interrupts(void)
|
|
{
|
|
/*
|
|
* Enable AIL if supported, and we are in hypervisor mode. This
|
|
* is called once for every processor.
|
|
*
|
|
* If we are not in hypervisor mode the job is done once for
|
|
* the whole partition in configure_exceptions().
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
unsigned long lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
|
|
}
|
|
|
|
/*
|
|
* Set HFSCR:TM based on CPU features:
|
|
* In the special case of TM no suspend (P9N DD2.1), Linux is
|
|
* told TM is off via the dt-ftrs but told to (partially) use
|
|
* it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
|
|
* will be off from dt-ftrs but we need to turn it on for the
|
|
* no suspend case.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
if (cpu_has_feature(CPU_FTR_TM_COMP))
|
|
mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
|
|
else
|
|
mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
|
|
}
|
|
|
|
/* Set IR and DR in PACA MSR */
|
|
get_paca()->kernel_msr = MSR_KERNEL;
|
|
}
|
|
|
|
unsigned long spr_default_dscr = 0;
|
|
|
|
void __init record_spr_defaults(void)
|
|
{
|
|
if (early_cpu_has_feature(CPU_FTR_DSCR))
|
|
spr_default_dscr = mfspr(SPRN_DSCR);
|
|
}
|
|
|
|
/*
|
|
* Early initialization entry point. This is called by head.S
|
|
* with MMU translation disabled. We rely on the "feature" of
|
|
* the CPU that ignores the top 2 bits of the address in real
|
|
* mode so we can access kernel globals normally provided we
|
|
* only toy with things in the RMO region. From here, we do
|
|
* some early parsing of the device-tree to setup out MEMBLOCK
|
|
* data structures, and allocate & initialize the hash table
|
|
* and segment tables so we can start running with translation
|
|
* enabled.
|
|
*
|
|
* It is this function which will call the probe() callback of
|
|
* the various platform types and copy the matching one to the
|
|
* global ppc_md structure. Your platform can eventually do
|
|
* some very early initializations from the probe() routine, but
|
|
* this is not recommended, be very careful as, for example, the
|
|
* device-tree is not accessible via normal means at this point.
|
|
*/
|
|
|
|
void __init __nostackprotector early_setup(unsigned long dt_ptr)
|
|
{
|
|
static __initdata struct paca_struct boot_paca;
|
|
|
|
/* -------- printk is _NOT_ safe to use here ! ------- */
|
|
|
|
/*
|
|
* Assume we're on cpu 0 for now.
|
|
*
|
|
* We need to load a PACA very early for a few reasons.
|
|
*
|
|
* The stack protector canary is stored in the paca, so as soon as we
|
|
* call any stack protected code we need r13 pointing somewhere valid.
|
|
*
|
|
* If we are using kcov it will call in_task() in its instrumentation,
|
|
* which relies on the current task from the PACA.
|
|
*
|
|
* dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
|
|
* printk(), which can trigger both stack protector and kcov.
|
|
*
|
|
* percpu variables and spin locks also use the paca.
|
|
*
|
|
* So set up a temporary paca. It will be replaced below once we know
|
|
* what CPU we are on.
|
|
*/
|
|
initialise_paca(&boot_paca, 0);
|
|
setup_paca(&boot_paca);
|
|
fixup_boot_paca();
|
|
|
|
/* -------- printk is now safe to use ------- */
|
|
|
|
/* Try new device tree based feature discovery ... */
|
|
if (!dt_cpu_ftrs_init(__va(dt_ptr)))
|
|
/* Otherwise use the old style CPU table */
|
|
identify_cpu(0, mfspr(SPRN_PVR));
|
|
|
|
/* Enable early debugging if any specified (see udbg.h) */
|
|
udbg_early_init();
|
|
|
|
udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
|
|
|
|
/*
|
|
* Do early initialization using the flattened device
|
|
* tree, such as retrieving the physical memory map or
|
|
* calculating/retrieving the hash table size.
|
|
*/
|
|
early_init_devtree(__va(dt_ptr));
|
|
|
|
/* Now we know the logical id of our boot cpu, setup the paca. */
|
|
if (boot_cpuid != 0) {
|
|
/* Poison paca_ptrs[0] again if it's not the boot cpu */
|
|
memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
|
|
}
|
|
setup_paca(paca_ptrs[boot_cpuid]);
|
|
fixup_boot_paca();
|
|
|
|
/*
|
|
* Configure exception handlers. This include setting up trampolines
|
|
* if needed, setting exception endian mode, etc...
|
|
*/
|
|
configure_exceptions();
|
|
|
|
/*
|
|
* Configure Kernel Userspace Protection. This needs to happen before
|
|
* feature fixups for platforms that implement this using features.
|
|
*/
|
|
setup_kup();
|
|
|
|
/* Apply all the dynamic patching */
|
|
apply_feature_fixups();
|
|
setup_feature_keys();
|
|
|
|
early_ioremap_setup();
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu();
|
|
|
|
/*
|
|
* After firmware and early platform setup code has set things up,
|
|
* we note the SPR values for configurable control/performance
|
|
* registers, and use those as initial defaults.
|
|
*/
|
|
record_spr_defaults();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set and enable AIL if it exists
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
|
|
/*
|
|
* We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
|
|
* will only actually get enabled on the boot cpu much later once
|
|
* ftrace itself has been initialized.
|
|
*/
|
|
this_cpu_enable_ftrace();
|
|
|
|
udbg_printf(" <- %s()\n", __func__);
|
|
|
|
#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
|
|
/*
|
|
* This needs to be done *last* (after the above udbg_printf() even)
|
|
*
|
|
* Right after we return from this function, we turn on the MMU
|
|
* which means the real-mode access trick that btext does will
|
|
* no longer work, it needs to switch to using a real MMU
|
|
* mapping. This call will ensure that it does
|
|
*/
|
|
btext_map();
|
|
#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void early_setup_secondary(void)
|
|
{
|
|
/* Mark interrupts disabled in PACA */
|
|
irq_soft_mask_set(IRQS_DISABLED);
|
|
|
|
/* Initialize the hash table or TLB handling */
|
|
early_init_mmu_secondary();
|
|
|
|
/* Perform any KUP setup that is per-cpu */
|
|
setup_kup();
|
|
|
|
/*
|
|
* At this point, we can let interrupts switch to virtual mode
|
|
* (the MMU has been setup), so adjust the MSR in the PACA to
|
|
* have IR and DR set.
|
|
*/
|
|
cpu_ready_for_interrupts();
|
|
}
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
void panic_smp_self_stop(void)
|
|
{
|
|
hard_irq_disable();
|
|
spin_begin();
|
|
while (1)
|
|
spin_cpu_relax();
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
|
|
static bool use_spinloop(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
|
|
/*
|
|
* See comments in head_64.S -- not all platforms insert
|
|
* secondaries at __secondary_hold and wait at the spin
|
|
* loop.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* When book3e boots from kexec, the ePAPR spin table does
|
|
* not get used.
|
|
*/
|
|
return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
|
|
}
|
|
|
|
void smp_release_cpus(void)
|
|
{
|
|
unsigned long *ptr;
|
|
int i;
|
|
|
|
if (!use_spinloop())
|
|
return;
|
|
|
|
/* All secondary cpus are spinning on a common spinloop, release them
|
|
* all now so they can start to spin on their individual paca
|
|
* spinloops. For non SMP kernels, the secondary cpus never get out
|
|
* of the common spinloop.
|
|
*/
|
|
|
|
ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
|
|
- PHYSICAL_START);
|
|
*ptr = ppc_function_entry(generic_secondary_smp_init);
|
|
|
|
/* And wait a bit for them to catch up */
|
|
for (i = 0; i < 100000; i++) {
|
|
mb();
|
|
HMT_low();
|
|
if (spinning_secondaries == 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
|
|
}
|
|
#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
|
|
|
|
/*
|
|
* Initialize some remaining members of the ppc64_caches and systemcfg
|
|
* structures
|
|
* (at least until we get rid of them completely). This is mostly some
|
|
* cache informations about the CPU that will be used by cache flush
|
|
* routines and/or provided to userland
|
|
*/
|
|
|
|
static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
|
|
u32 bsize, u32 sets)
|
|
{
|
|
info->size = size;
|
|
info->sets = sets;
|
|
info->line_size = lsize;
|
|
info->block_size = bsize;
|
|
info->log_block_size = __ilog2(bsize);
|
|
if (bsize)
|
|
info->blocks_per_page = PAGE_SIZE / bsize;
|
|
else
|
|
info->blocks_per_page = 0;
|
|
|
|
if (sets == 0)
|
|
info->assoc = 0xffff;
|
|
else
|
|
info->assoc = size / (sets * lsize);
|
|
}
|
|
|
|
static bool __init parse_cache_info(struct device_node *np,
|
|
bool icache,
|
|
struct ppc_cache_info *info)
|
|
{
|
|
static const char *ipropnames[] __initdata = {
|
|
"i-cache-size",
|
|
"i-cache-sets",
|
|
"i-cache-block-size",
|
|
"i-cache-line-size",
|
|
};
|
|
static const char *dpropnames[] __initdata = {
|
|
"d-cache-size",
|
|
"d-cache-sets",
|
|
"d-cache-block-size",
|
|
"d-cache-line-size",
|
|
};
|
|
const char **propnames = icache ? ipropnames : dpropnames;
|
|
const __be32 *sizep, *lsizep, *bsizep, *setsp;
|
|
u32 size, lsize, bsize, sets;
|
|
bool success = true;
|
|
|
|
size = 0;
|
|
sets = -1u;
|
|
lsize = bsize = cur_cpu_spec->dcache_bsize;
|
|
sizep = of_get_property(np, propnames[0], NULL);
|
|
if (sizep != NULL)
|
|
size = be32_to_cpu(*sizep);
|
|
setsp = of_get_property(np, propnames[1], NULL);
|
|
if (setsp != NULL)
|
|
sets = be32_to_cpu(*setsp);
|
|
bsizep = of_get_property(np, propnames[2], NULL);
|
|
lsizep = of_get_property(np, propnames[3], NULL);
|
|
if (bsizep == NULL)
|
|
bsizep = lsizep;
|
|
if (lsizep != NULL)
|
|
lsize = be32_to_cpu(*lsizep);
|
|
if (bsizep != NULL)
|
|
bsize = be32_to_cpu(*bsizep);
|
|
if (sizep == NULL || bsizep == NULL || lsizep == NULL)
|
|
success = false;
|
|
|
|
/*
|
|
* OF is weird .. it represents fully associative caches
|
|
* as "1 way" which doesn't make much sense and doesn't
|
|
* leave room for direct mapped. We'll assume that 0
|
|
* in OF means direct mapped for that reason.
|
|
*/
|
|
if (sets == 1)
|
|
sets = 0;
|
|
else if (sets == 0)
|
|
sets = 1;
|
|
|
|
init_cache_info(info, size, lsize, bsize, sets);
|
|
|
|
return success;
|
|
}
|
|
|
|
void __init initialize_cache_info(void)
|
|
{
|
|
struct device_node *cpu = NULL, *l2, *l3 = NULL;
|
|
u32 pvr;
|
|
|
|
/*
|
|
* All shipping POWER8 machines have a firmware bug that
|
|
* puts incorrect information in the device-tree. This will
|
|
* be (hopefully) fixed for future chips but for now hard
|
|
* code the values if we are running on one of these
|
|
*/
|
|
pvr = PVR_VER(mfspr(SPRN_PVR));
|
|
if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
|
|
pvr == PVR_POWER8NVL) {
|
|
/* size lsize blk sets */
|
|
init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
|
|
init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
|
|
init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
|
|
init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
|
|
} else
|
|
cpu = of_find_node_by_type(NULL, "cpu");
|
|
|
|
/*
|
|
* We're assuming *all* of the CPUs have the same
|
|
* d-cache and i-cache sizes... -Peter
|
|
*/
|
|
if (cpu) {
|
|
if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
|
|
pr_warn("Argh, can't find dcache properties !\n");
|
|
|
|
if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
|
|
pr_warn("Argh, can't find icache properties !\n");
|
|
|
|
/*
|
|
* Try to find the L2 and L3 if any. Assume they are
|
|
* unified and use the D-side properties.
|
|
*/
|
|
l2 = of_find_next_cache_node(cpu);
|
|
of_node_put(cpu);
|
|
if (l2) {
|
|
parse_cache_info(l2, false, &ppc64_caches.l2);
|
|
l3 = of_find_next_cache_node(l2);
|
|
of_node_put(l2);
|
|
}
|
|
if (l3) {
|
|
parse_cache_info(l3, false, &ppc64_caches.l3);
|
|
of_node_put(l3);
|
|
}
|
|
}
|
|
|
|
/* For use by binfmt_elf */
|
|
dcache_bsize = ppc64_caches.l1d.block_size;
|
|
icache_bsize = ppc64_caches.l1i.block_size;
|
|
|
|
cur_cpu_spec->dcache_bsize = dcache_bsize;
|
|
cur_cpu_spec->icache_bsize = icache_bsize;
|
|
}
|
|
|
|
/*
|
|
* This returns the limit below which memory accesses to the linear
|
|
* mapping are guarnateed not to cause an architectural exception (e.g.,
|
|
* TLB or SLB miss fault).
|
|
*
|
|
* This is used to allocate PACAs and various interrupt stacks that
|
|
* that are accessed early in interrupt handlers that must not cause
|
|
* re-entrant interrupts.
|
|
*/
|
|
__init u64 ppc64_bolted_size(void)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
/* Freescale BookE bolts the entire linear mapping */
|
|
/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
|
|
if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
|
|
return linear_map_top;
|
|
/* Other BookE, we assume the first GB is bolted */
|
|
return 1ul << 30;
|
|
#else
|
|
/* BookS radix, does not take faults on linear mapping */
|
|
if (early_radix_enabled())
|
|
return ULONG_MAX;
|
|
|
|
/* BookS hash, the first segment is bolted */
|
|
if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
return 1UL << SID_SHIFT_1T;
|
|
return 1UL << SID_SHIFT;
|
|
#endif
|
|
}
|
|
|
|
static void *__init alloc_stack(unsigned long limit, int cpu)
|
|
{
|
|
void *ptr;
|
|
|
|
BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
|
|
|
|
ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
|
|
MEMBLOCK_LOW_LIMIT, limit,
|
|
early_cpu_to_node(cpu));
|
|
if (!ptr)
|
|
panic("cannot allocate stacks");
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void __init irqstack_early_init(void)
|
|
{
|
|
u64 limit = ppc64_bolted_size();
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Interrupt stacks must be in the first segment since we
|
|
* cannot afford to take SLB misses on them. They are not
|
|
* accessed in realmode.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
softirq_ctx[i] = alloc_stack(limit, i);
|
|
hardirq_ctx[i] = alloc_stack(limit, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3E
|
|
void __init exc_lvl_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
void *sp;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
critirq_ctx[i] = sp;
|
|
paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
dbgirq_ctx[i] = sp;
|
|
paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
|
|
|
|
sp = alloc_stack(ULONG_MAX, i);
|
|
mcheckirq_ctx[i] = sp;
|
|
paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
|
|
patch_exception(0x040, exc_debug_debug_book3e);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Stack space used when we detect a bad kernel stack pointer, and
|
|
* early in SMP boots before relocation is enabled. Exclusive emergency
|
|
* stack for machine checks.
|
|
*/
|
|
void __init emergency_stack_init(void)
|
|
{
|
|
u64 limit;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Emergency stacks must be under 256MB, we cannot afford to take
|
|
* SLB misses on them. The ABI also requires them to be 128-byte
|
|
* aligned.
|
|
*
|
|
* Since we use these as temporary stacks during secondary CPU
|
|
* bringup, machine check, system reset, and HMI, we need to get
|
|
* at them in real mode. This means they must also be within the RMO
|
|
* region.
|
|
*
|
|
* The IRQ stacks allocated elsewhere in this file are zeroed and
|
|
* initialized in kernel/irq.c. These are initialized here in order
|
|
* to have emergency stacks available as early as possible.
|
|
*/
|
|
limit = min(ppc64_bolted_size(), ppc64_rma_size);
|
|
|
|
for_each_possible_cpu(i) {
|
|
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* emergency stack for NMI exception handling. */
|
|
paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
|
|
|
|
/* emergency stack for machine check exception handling. */
|
|
paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define PCPU_DYN_SIZE ()
|
|
|
|
static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
|
|
{
|
|
return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
|
|
MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
early_cpu_to_node(cpu));
|
|
|
|
}
|
|
|
|
static void __init pcpu_fc_free(void *ptr, size_t size)
|
|
{
|
|
memblock_free(__pa(ptr), size);
|
|
}
|
|
|
|
static int pcpu_cpu_distance(unsigned int from, unsigned int to)
|
|
{
|
|
if (early_cpu_to_node(from) == early_cpu_to_node(to))
|
|
return LOCAL_DISTANCE;
|
|
else
|
|
return REMOTE_DISTANCE;
|
|
}
|
|
|
|
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
|
|
void __init setup_per_cpu_areas(void)
|
|
{
|
|
const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
|
|
size_t atom_size;
|
|
unsigned long delta;
|
|
unsigned int cpu;
|
|
int rc;
|
|
|
|
/*
|
|
* Linear mapping is one of 4K, 1M and 16M. For 4K, no need
|
|
* to group units. For larger mappings, use 1M atom which
|
|
* should be large enough to contain a number of units.
|
|
*/
|
|
if (mmu_linear_psize == MMU_PAGE_4K)
|
|
atom_size = PAGE_SIZE;
|
|
else
|
|
atom_size = 1 << 20;
|
|
|
|
rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
|
|
pcpu_fc_alloc, pcpu_fc_free);
|
|
if (rc < 0)
|
|
panic("cannot initialize percpu area (err=%d)", rc);
|
|
|
|
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
|
|
for_each_possible_cpu(cpu) {
|
|
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
|
|
paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
|
|
unsigned long memory_block_size_bytes(void)
|
|
{
|
|
if (ppc_md.memory_block_size)
|
|
return ppc_md.memory_block_size();
|
|
|
|
return MIN_MEMORY_BLOCK_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
|
|
struct ppc_pci_io ppc_pci_io;
|
|
EXPORT_SYMBOL(ppc_pci_io);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
u64 hw_nmi_get_sample_period(int watchdog_thresh)
|
|
{
|
|
return ppc_proc_freq * watchdog_thresh;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The perf based hardlockup detector breaks PMU event based branches, so
|
|
* disable it by default. Book3S has a soft-nmi hardlockup detector based
|
|
* on the decrementer interrupt, so it does not suffer from this problem.
|
|
*
|
|
* It is likely to get false positives in VM guests, so disable it there
|
|
* by default too.
|
|
*/
|
|
static int __init disable_hardlockup_detector(void)
|
|
{
|
|
#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
|
|
hardlockup_detector_disable();
|
|
#else
|
|
if (firmware_has_feature(FW_FEATURE_LPAR))
|
|
hardlockup_detector_disable();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(disable_hardlockup_detector);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
static enum l1d_flush_type enabled_flush_types;
|
|
static void *l1d_flush_fallback_area;
|
|
static bool no_rfi_flush;
|
|
bool rfi_flush;
|
|
|
|
static int __init handle_no_rfi_flush(char *p)
|
|
{
|
|
pr_info("rfi-flush: disabled on command line.");
|
|
no_rfi_flush = true;
|
|
return 0;
|
|
}
|
|
early_param("no_rfi_flush", handle_no_rfi_flush);
|
|
|
|
/*
|
|
* The RFI flush is not KPTI, but because users will see doco that says to use
|
|
* nopti we hijack that option here to also disable the RFI flush.
|
|
*/
|
|
static int __init handle_no_pti(char *p)
|
|
{
|
|
pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
|
|
handle_no_rfi_flush(NULL);
|
|
return 0;
|
|
}
|
|
early_param("nopti", handle_no_pti);
|
|
|
|
static void do_nothing(void *unused)
|
|
{
|
|
/*
|
|
* We don't need to do the flush explicitly, just enter+exit kernel is
|
|
* sufficient, the RFI exit handlers will do the right thing.
|
|
*/
|
|
}
|
|
|
|
void rfi_flush_enable(bool enable)
|
|
{
|
|
if (enable) {
|
|
do_rfi_flush_fixups(enabled_flush_types);
|
|
on_each_cpu(do_nothing, NULL, 1);
|
|
} else
|
|
do_rfi_flush_fixups(L1D_FLUSH_NONE);
|
|
|
|
rfi_flush = enable;
|
|
}
|
|
|
|
static void __ref init_fallback_flush(void)
|
|
{
|
|
u64 l1d_size, limit;
|
|
int cpu;
|
|
|
|
/* Only allocate the fallback flush area once (at boot time). */
|
|
if (l1d_flush_fallback_area)
|
|
return;
|
|
|
|
l1d_size = ppc64_caches.l1d.size;
|
|
|
|
/*
|
|
* If there is no d-cache-size property in the device tree, l1d_size
|
|
* could be zero. That leads to the loop in the asm wrapping around to
|
|
* 2^64-1, and then walking off the end of the fallback area and
|
|
* eventually causing a page fault which is fatal. Just default to
|
|
* something vaguely sane.
|
|
*/
|
|
if (!l1d_size)
|
|
l1d_size = (64 * 1024);
|
|
|
|
limit = min(ppc64_bolted_size(), ppc64_rma_size);
|
|
|
|
/*
|
|
* Align to L1d size, and size it at 2x L1d size, to catch possible
|
|
* hardware prefetch runoff. We don't have a recipe for load patterns to
|
|
* reliably avoid the prefetcher.
|
|
*/
|
|
l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
|
|
l1d_size, MEMBLOCK_LOW_LIMIT,
|
|
limit, NUMA_NO_NODE);
|
|
if (!l1d_flush_fallback_area)
|
|
panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
|
|
__func__, l1d_size * 2, l1d_size, &limit);
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct paca_struct *paca = paca_ptrs[cpu];
|
|
paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
|
|
paca->l1d_flush_size = l1d_size;
|
|
}
|
|
}
|
|
|
|
void setup_rfi_flush(enum l1d_flush_type types, bool enable)
|
|
{
|
|
if (types & L1D_FLUSH_FALLBACK) {
|
|
pr_info("rfi-flush: fallback displacement flush available\n");
|
|
init_fallback_flush();
|
|
}
|
|
|
|
if (types & L1D_FLUSH_ORI)
|
|
pr_info("rfi-flush: ori type flush available\n");
|
|
|
|
if (types & L1D_FLUSH_MTTRIG)
|
|
pr_info("rfi-flush: mttrig type flush available\n");
|
|
|
|
enabled_flush_types = types;
|
|
|
|
if (!no_rfi_flush && !cpu_mitigations_off())
|
|
rfi_flush_enable(enable);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int rfi_flush_set(void *data, u64 val)
|
|
{
|
|
bool enable;
|
|
|
|
if (val == 1)
|
|
enable = true;
|
|
else if (val == 0)
|
|
enable = false;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* Only do anything if we're changing state */
|
|
if (enable != rfi_flush)
|
|
rfi_flush_enable(enable);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rfi_flush_get(void *data, u64 *val)
|
|
{
|
|
*val = rfi_flush ? 1 : 0;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
|
|
|
|
static __init int rfi_flush_debugfs_init(void)
|
|
{
|
|
debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
|
|
return 0;
|
|
}
|
|
device_initcall(rfi_flush_debugfs_init);
|
|
#endif
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|