tmp_suning_uos_patched/net/core/netpoll.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

919 lines
21 KiB
C

/*
* Common framework for low-level network console, dump, and debugger code
*
* Sep 8 2003 Matt Mackall <mpm@selenic.com>
*
* based on the netconsole code from:
*
* Copyright (C) 2001 Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2002 Red Hat, Inc.
*/
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/inetdevice.h>
#include <linux/inet.h>
#include <linux/interrupt.h>
#include <linux/netpoll.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <asm/unaligned.h>
#include <trace/events/napi.h>
/*
* We maintain a small pool of fully-sized skbs, to make sure the
* message gets out even in extreme OOM situations.
*/
#define MAX_UDP_CHUNK 1460
#define MAX_SKBS 32
#define MAX_QUEUE_DEPTH (MAX_SKBS / 2)
static struct sk_buff_head skb_pool;
static atomic_t trapped;
#define USEC_PER_POLL 50
#define NETPOLL_RX_ENABLED 1
#define NETPOLL_RX_DROP 2
#define MAX_SKB_SIZE \
(MAX_UDP_CHUNK + sizeof(struct udphdr) + \
sizeof(struct iphdr) + sizeof(struct ethhdr))
static void zap_completion_queue(void);
static void arp_reply(struct sk_buff *skb);
static unsigned int carrier_timeout = 4;
module_param(carrier_timeout, uint, 0644);
static void queue_process(struct work_struct *work)
{
struct netpoll_info *npinfo =
container_of(work, struct netpoll_info, tx_work.work);
struct sk_buff *skb;
unsigned long flags;
while ((skb = skb_dequeue(&npinfo->txq))) {
struct net_device *dev = skb->dev;
const struct net_device_ops *ops = dev->netdev_ops;
struct netdev_queue *txq;
if (!netif_device_present(dev) || !netif_running(dev)) {
__kfree_skb(skb);
continue;
}
txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
local_irq_save(flags);
__netif_tx_lock(txq, smp_processor_id());
if (netif_tx_queue_stopped(txq) ||
netif_tx_queue_frozen(txq) ||
ops->ndo_start_xmit(skb, dev) != NETDEV_TX_OK) {
skb_queue_head(&npinfo->txq, skb);
__netif_tx_unlock(txq);
local_irq_restore(flags);
schedule_delayed_work(&npinfo->tx_work, HZ/10);
return;
}
__netif_tx_unlock(txq);
local_irq_restore(flags);
}
}
static __sum16 checksum_udp(struct sk_buff *skb, struct udphdr *uh,
unsigned short ulen, __be32 saddr, __be32 daddr)
{
__wsum psum;
if (uh->check == 0 || skb_csum_unnecessary(skb))
return 0;
psum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0);
if (skb->ip_summed == CHECKSUM_COMPLETE &&
!csum_fold(csum_add(psum, skb->csum)))
return 0;
skb->csum = psum;
return __skb_checksum_complete(skb);
}
/*
* Check whether delayed processing was scheduled for our NIC. If so,
* we attempt to grab the poll lock and use ->poll() to pump the card.
* If this fails, either we've recursed in ->poll() or it's already
* running on another CPU.
*
* Note: we don't mask interrupts with this lock because we're using
* trylock here and interrupts are already disabled in the softirq
* case. Further, we test the poll_owner to avoid recursion on UP
* systems where the lock doesn't exist.
*
* In cases where there is bi-directional communications, reading only
* one message at a time can lead to packets being dropped by the
* network adapter, forcing superfluous retries and possibly timeouts.
* Thus, we set our budget to greater than 1.
*/
static int poll_one_napi(struct netpoll_info *npinfo,
struct napi_struct *napi, int budget)
{
int work;
/* net_rx_action's ->poll() invocations and our's are
* synchronized by this test which is only made while
* holding the napi->poll_lock.
*/
if (!test_bit(NAPI_STATE_SCHED, &napi->state))
return budget;
npinfo->rx_flags |= NETPOLL_RX_DROP;
atomic_inc(&trapped);
set_bit(NAPI_STATE_NPSVC, &napi->state);
work = napi->poll(napi, budget);
trace_napi_poll(napi);
clear_bit(NAPI_STATE_NPSVC, &napi->state);
atomic_dec(&trapped);
npinfo->rx_flags &= ~NETPOLL_RX_DROP;
return budget - work;
}
static void poll_napi(struct net_device *dev)
{
struct napi_struct *napi;
int budget = 16;
list_for_each_entry(napi, &dev->napi_list, dev_list) {
if (napi->poll_owner != smp_processor_id() &&
spin_trylock(&napi->poll_lock)) {
budget = poll_one_napi(dev->npinfo, napi, budget);
spin_unlock(&napi->poll_lock);
if (!budget)
break;
}
}
}
static void service_arp_queue(struct netpoll_info *npi)
{
if (npi) {
struct sk_buff *skb;
while ((skb = skb_dequeue(&npi->arp_tx)))
arp_reply(skb);
}
}
void netpoll_poll(struct netpoll *np)
{
struct net_device *dev = np->dev;
const struct net_device_ops *ops;
if (!dev || !netif_running(dev))
return;
ops = dev->netdev_ops;
if (!ops->ndo_poll_controller)
return;
/* Process pending work on NIC */
ops->ndo_poll_controller(dev);
poll_napi(dev);
service_arp_queue(dev->npinfo);
zap_completion_queue();
}
static void refill_skbs(void)
{
struct sk_buff *skb;
unsigned long flags;
spin_lock_irqsave(&skb_pool.lock, flags);
while (skb_pool.qlen < MAX_SKBS) {
skb = alloc_skb(MAX_SKB_SIZE, GFP_ATOMIC);
if (!skb)
break;
__skb_queue_tail(&skb_pool, skb);
}
spin_unlock_irqrestore(&skb_pool.lock, flags);
}
static void zap_completion_queue(void)
{
unsigned long flags;
struct softnet_data *sd = &get_cpu_var(softnet_data);
if (sd->completion_queue) {
struct sk_buff *clist;
local_irq_save(flags);
clist = sd->completion_queue;
sd->completion_queue = NULL;
local_irq_restore(flags);
while (clist != NULL) {
struct sk_buff *skb = clist;
clist = clist->next;
if (skb->destructor) {
atomic_inc(&skb->users);
dev_kfree_skb_any(skb); /* put this one back */
} else {
__kfree_skb(skb);
}
}
}
put_cpu_var(softnet_data);
}
static struct sk_buff *find_skb(struct netpoll *np, int len, int reserve)
{
int count = 0;
struct sk_buff *skb;
zap_completion_queue();
refill_skbs();
repeat:
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
skb = skb_dequeue(&skb_pool);
if (!skb) {
if (++count < 10) {
netpoll_poll(np);
goto repeat;
}
return NULL;
}
atomic_set(&skb->users, 1);
skb_reserve(skb, reserve);
return skb;
}
static int netpoll_owner_active(struct net_device *dev)
{
struct napi_struct *napi;
list_for_each_entry(napi, &dev->napi_list, dev_list) {
if (napi->poll_owner == smp_processor_id())
return 1;
}
return 0;
}
static void netpoll_send_skb(struct netpoll *np, struct sk_buff *skb)
{
int status = NETDEV_TX_BUSY;
unsigned long tries;
struct net_device *dev = np->dev;
const struct net_device_ops *ops = dev->netdev_ops;
struct netpoll_info *npinfo = np->dev->npinfo;
if (!npinfo || !netif_running(dev) || !netif_device_present(dev)) {
__kfree_skb(skb);
return;
}
/* don't get messages out of order, and no recursion */
if (skb_queue_len(&npinfo->txq) == 0 && !netpoll_owner_active(dev)) {
struct netdev_queue *txq;
unsigned long flags;
txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
local_irq_save(flags);
/* try until next clock tick */
for (tries = jiffies_to_usecs(1)/USEC_PER_POLL;
tries > 0; --tries) {
if (__netif_tx_trylock(txq)) {
if (!netif_tx_queue_stopped(txq)) {
status = ops->ndo_start_xmit(skb, dev);
if (status == NETDEV_TX_OK)
txq_trans_update(txq);
}
__netif_tx_unlock(txq);
if (status == NETDEV_TX_OK)
break;
}
/* tickle device maybe there is some cleanup */
netpoll_poll(np);
udelay(USEC_PER_POLL);
}
WARN_ONCE(!irqs_disabled(),
"netpoll_send_skb(): %s enabled interrupts in poll (%pF)\n",
dev->name, ops->ndo_start_xmit);
local_irq_restore(flags);
}
if (status != NETDEV_TX_OK) {
skb_queue_tail(&npinfo->txq, skb);
schedule_delayed_work(&npinfo->tx_work,0);
}
}
void netpoll_send_udp(struct netpoll *np, const char *msg, int len)
{
int total_len, eth_len, ip_len, udp_len;
struct sk_buff *skb;
struct udphdr *udph;
struct iphdr *iph;
struct ethhdr *eth;
udp_len = len + sizeof(*udph);
ip_len = eth_len = udp_len + sizeof(*iph);
total_len = eth_len + ETH_HLEN + NET_IP_ALIGN;
skb = find_skb(np, total_len, total_len - len);
if (!skb)
return;
skb_copy_to_linear_data(skb, msg, len);
skb->len += len;
skb_push(skb, sizeof(*udph));
skb_reset_transport_header(skb);
udph = udp_hdr(skb);
udph->source = htons(np->local_port);
udph->dest = htons(np->remote_port);
udph->len = htons(udp_len);
udph->check = 0;
udph->check = csum_tcpudp_magic(np->local_ip,
np->remote_ip,
udp_len, IPPROTO_UDP,
csum_partial(udph, udp_len, 0));
if (udph->check == 0)
udph->check = CSUM_MANGLED_0;
skb_push(skb, sizeof(*iph));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
/* iph->version = 4; iph->ihl = 5; */
put_unaligned(0x45, (unsigned char *)iph);
iph->tos = 0;
put_unaligned(htons(ip_len), &(iph->tot_len));
iph->id = 0;
iph->frag_off = 0;
iph->ttl = 64;
iph->protocol = IPPROTO_UDP;
iph->check = 0;
put_unaligned(np->local_ip, &(iph->saddr));
put_unaligned(np->remote_ip, &(iph->daddr));
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
skb_reset_mac_header(skb);
skb->protocol = eth->h_proto = htons(ETH_P_IP);
memcpy(eth->h_source, np->dev->dev_addr, ETH_ALEN);
memcpy(eth->h_dest, np->remote_mac, ETH_ALEN);
skb->dev = np->dev;
netpoll_send_skb(np, skb);
}
static void arp_reply(struct sk_buff *skb)
{
struct netpoll_info *npinfo = skb->dev->npinfo;
struct arphdr *arp;
unsigned char *arp_ptr;
int size, type = ARPOP_REPLY, ptype = ETH_P_ARP;
__be32 sip, tip;
unsigned char *sha;
struct sk_buff *send_skb;
struct netpoll *np, *tmp;
unsigned long flags;
int hits = 0;
if (list_empty(&npinfo->rx_np))
return;
/* Before checking the packet, we do some early
inspection whether this is interesting at all */
spin_lock_irqsave(&npinfo->rx_lock, flags);
list_for_each_entry_safe(np, tmp, &npinfo->rx_np, rx) {
if (np->dev == skb->dev)
hits++;
}
spin_unlock_irqrestore(&npinfo->rx_lock, flags);
/* No netpoll struct is using this dev */
if (!hits)
return;
/* No arp on this interface */
if (skb->dev->flags & IFF_NOARP)
return;
if (!pskb_may_pull(skb, arp_hdr_len(skb->dev)))
return;
skb_reset_network_header(skb);
skb_reset_transport_header(skb);
arp = arp_hdr(skb);
if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
arp->ar_pro != htons(ETH_P_IP) ||
arp->ar_op != htons(ARPOP_REQUEST))
return;
arp_ptr = (unsigned char *)(arp+1);
/* save the location of the src hw addr */
sha = arp_ptr;
arp_ptr += skb->dev->addr_len;
memcpy(&sip, arp_ptr, 4);
arp_ptr += 4;
/* If we actually cared about dst hw addr,
it would get copied here */
arp_ptr += skb->dev->addr_len;
memcpy(&tip, arp_ptr, 4);
/* Should we ignore arp? */
if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
return;
size = arp_hdr_len(skb->dev);
spin_lock_irqsave(&npinfo->rx_lock, flags);
list_for_each_entry_safe(np, tmp, &npinfo->rx_np, rx) {
if (tip != np->local_ip)
continue;
send_skb = find_skb(np, size + LL_ALLOCATED_SPACE(np->dev),
LL_RESERVED_SPACE(np->dev));
if (!send_skb)
continue;
skb_reset_network_header(send_skb);
arp = (struct arphdr *) skb_put(send_skb, size);
send_skb->dev = skb->dev;
send_skb->protocol = htons(ETH_P_ARP);
/* Fill the device header for the ARP frame */
if (dev_hard_header(send_skb, skb->dev, ptype,
sha, np->dev->dev_addr,
send_skb->len) < 0) {
kfree_skb(send_skb);
continue;
}
/*
* Fill out the arp protocol part.
*
* we only support ethernet device type,
* which (according to RFC 1390) should
* always equal 1 (Ethernet).
*/
arp->ar_hrd = htons(np->dev->type);
arp->ar_pro = htons(ETH_P_IP);
arp->ar_hln = np->dev->addr_len;
arp->ar_pln = 4;
arp->ar_op = htons(type);
arp_ptr = (unsigned char *)(arp + 1);
memcpy(arp_ptr, np->dev->dev_addr, np->dev->addr_len);
arp_ptr += np->dev->addr_len;
memcpy(arp_ptr, &tip, 4);
arp_ptr += 4;
memcpy(arp_ptr, sha, np->dev->addr_len);
arp_ptr += np->dev->addr_len;
memcpy(arp_ptr, &sip, 4);
netpoll_send_skb(np, send_skb);
/* If there are several rx_hooks for the same address,
we're fine by sending a single reply */
break;
}
spin_unlock_irqrestore(&npinfo->rx_lock, flags);
}
int __netpoll_rx(struct sk_buff *skb)
{
int proto, len, ulen;
int hits = 0;
struct iphdr *iph;
struct udphdr *uh;
struct netpoll_info *npinfo = skb->dev->npinfo;
struct netpoll *np, *tmp;
if (list_empty(&npinfo->rx_np))
goto out;
if (skb->dev->type != ARPHRD_ETHER)
goto out;
/* check if netpoll clients need ARP */
if (skb->protocol == htons(ETH_P_ARP) &&
atomic_read(&trapped)) {
skb_queue_tail(&npinfo->arp_tx, skb);
return 1;
}
proto = ntohs(eth_hdr(skb)->h_proto);
if (proto != ETH_P_IP)
goto out;
if (skb->pkt_type == PACKET_OTHERHOST)
goto out;
if (skb_shared(skb))
goto out;
iph = (struct iphdr *)skb->data;
if (!pskb_may_pull(skb, sizeof(struct iphdr)))
goto out;
if (iph->ihl < 5 || iph->version != 4)
goto out;
if (!pskb_may_pull(skb, iph->ihl*4))
goto out;
if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)
goto out;
len = ntohs(iph->tot_len);
if (skb->len < len || len < iph->ihl*4)
goto out;
/*
* Our transport medium may have padded the buffer out.
* Now We trim to the true length of the frame.
*/
if (pskb_trim_rcsum(skb, len))
goto out;
if (iph->protocol != IPPROTO_UDP)
goto out;
len -= iph->ihl*4;
uh = (struct udphdr *)(((char *)iph) + iph->ihl*4);
ulen = ntohs(uh->len);
if (ulen != len)
goto out;
if (checksum_udp(skb, uh, ulen, iph->saddr, iph->daddr))
goto out;
list_for_each_entry_safe(np, tmp, &npinfo->rx_np, rx) {
if (np->local_ip && np->local_ip != iph->daddr)
continue;
if (np->remote_ip && np->remote_ip != iph->saddr)
continue;
if (np->local_port && np->local_port != ntohs(uh->dest))
continue;
np->rx_hook(np, ntohs(uh->source),
(char *)(uh+1),
ulen - sizeof(struct udphdr));
hits++;
}
if (!hits)
goto out;
kfree_skb(skb);
return 1;
out:
if (atomic_read(&trapped)) {
kfree_skb(skb);
return 1;
}
return 0;
}
void netpoll_print_options(struct netpoll *np)
{
printk(KERN_INFO "%s: local port %d\n",
np->name, np->local_port);
printk(KERN_INFO "%s: local IP %pI4\n",
np->name, &np->local_ip);
printk(KERN_INFO "%s: interface '%s'\n",
np->name, np->dev_name);
printk(KERN_INFO "%s: remote port %d\n",
np->name, np->remote_port);
printk(KERN_INFO "%s: remote IP %pI4\n",
np->name, &np->remote_ip);
printk(KERN_INFO "%s: remote ethernet address %pM\n",
np->name, np->remote_mac);
}
int netpoll_parse_options(struct netpoll *np, char *opt)
{
char *cur=opt, *delim;
if (*cur != '@') {
if ((delim = strchr(cur, '@')) == NULL)
goto parse_failed;
*delim = 0;
np->local_port = simple_strtol(cur, NULL, 10);
cur = delim;
}
cur++;
if (*cur != '/') {
if ((delim = strchr(cur, '/')) == NULL)
goto parse_failed;
*delim = 0;
np->local_ip = in_aton(cur);
cur = delim;
}
cur++;
if (*cur != ',') {
/* parse out dev name */
if ((delim = strchr(cur, ',')) == NULL)
goto parse_failed;
*delim = 0;
strlcpy(np->dev_name, cur, sizeof(np->dev_name));
cur = delim;
}
cur++;
if (*cur != '@') {
/* dst port */
if ((delim = strchr(cur, '@')) == NULL)
goto parse_failed;
*delim = 0;
if (*cur == ' ' || *cur == '\t')
printk(KERN_INFO "%s: warning: whitespace"
"is not allowed\n", np->name);
np->remote_port = simple_strtol(cur, NULL, 10);
cur = delim;
}
cur++;
/* dst ip */
if ((delim = strchr(cur, '/')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_ip = in_aton(cur);
cur = delim + 1;
if (*cur != 0) {
/* MAC address */
if ((delim = strchr(cur, ':')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_mac[0] = simple_strtol(cur, NULL, 16);
cur = delim + 1;
if ((delim = strchr(cur, ':')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_mac[1] = simple_strtol(cur, NULL, 16);
cur = delim + 1;
if ((delim = strchr(cur, ':')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_mac[2] = simple_strtol(cur, NULL, 16);
cur = delim + 1;
if ((delim = strchr(cur, ':')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_mac[3] = simple_strtol(cur, NULL, 16);
cur = delim + 1;
if ((delim = strchr(cur, ':')) == NULL)
goto parse_failed;
*delim = 0;
np->remote_mac[4] = simple_strtol(cur, NULL, 16);
cur = delim + 1;
np->remote_mac[5] = simple_strtol(cur, NULL, 16);
}
netpoll_print_options(np);
return 0;
parse_failed:
printk(KERN_INFO "%s: couldn't parse config at '%s'!\n",
np->name, cur);
return -1;
}
int netpoll_setup(struct netpoll *np)
{
struct net_device *ndev = NULL;
struct in_device *in_dev;
struct netpoll_info *npinfo;
struct netpoll *npe, *tmp;
unsigned long flags;
int err;
if (np->dev_name)
ndev = dev_get_by_name(&init_net, np->dev_name);
if (!ndev) {
printk(KERN_ERR "%s: %s doesn't exist, aborting.\n",
np->name, np->dev_name);
return -ENODEV;
}
np->dev = ndev;
if (!ndev->npinfo) {
npinfo = kmalloc(sizeof(*npinfo), GFP_KERNEL);
if (!npinfo) {
err = -ENOMEM;
goto put;
}
npinfo->rx_flags = 0;
INIT_LIST_HEAD(&npinfo->rx_np);
spin_lock_init(&npinfo->rx_lock);
skb_queue_head_init(&npinfo->arp_tx);
skb_queue_head_init(&npinfo->txq);
INIT_DELAYED_WORK(&npinfo->tx_work, queue_process);
atomic_set(&npinfo->refcnt, 1);
} else {
npinfo = ndev->npinfo;
atomic_inc(&npinfo->refcnt);
}
if (!ndev->netdev_ops->ndo_poll_controller) {
printk(KERN_ERR "%s: %s doesn't support polling, aborting.\n",
np->name, np->dev_name);
err = -ENOTSUPP;
goto release;
}
if (!netif_running(ndev)) {
unsigned long atmost, atleast;
printk(KERN_INFO "%s: device %s not up yet, forcing it\n",
np->name, np->dev_name);
rtnl_lock();
err = dev_open(ndev);
rtnl_unlock();
if (err) {
printk(KERN_ERR "%s: failed to open %s\n",
np->name, ndev->name);
goto release;
}
atleast = jiffies + HZ/10;
atmost = jiffies + carrier_timeout * HZ;
while (!netif_carrier_ok(ndev)) {
if (time_after(jiffies, atmost)) {
printk(KERN_NOTICE
"%s: timeout waiting for carrier\n",
np->name);
break;
}
msleep(1);
}
/* If carrier appears to come up instantly, we don't
* trust it and pause so that we don't pump all our
* queued console messages into the bitbucket.
*/
if (time_before(jiffies, atleast)) {
printk(KERN_NOTICE "%s: carrier detect appears"
" untrustworthy, waiting 4 seconds\n",
np->name);
msleep(4000);
}
}
if (!np->local_ip) {
rcu_read_lock();
in_dev = __in_dev_get_rcu(ndev);
if (!in_dev || !in_dev->ifa_list) {
rcu_read_unlock();
printk(KERN_ERR "%s: no IP address for %s, aborting\n",
np->name, np->dev_name);
err = -EDESTADDRREQ;
goto release;
}
np->local_ip = in_dev->ifa_list->ifa_local;
rcu_read_unlock();
printk(KERN_INFO "%s: local IP %pI4\n", np->name, &np->local_ip);
}
if (np->rx_hook) {
spin_lock_irqsave(&npinfo->rx_lock, flags);
npinfo->rx_flags |= NETPOLL_RX_ENABLED;
list_add_tail(&np->rx, &npinfo->rx_np);
spin_unlock_irqrestore(&npinfo->rx_lock, flags);
}
/* fill up the skb queue */
refill_skbs();
/* last thing to do is link it to the net device structure */
ndev->npinfo = npinfo;
/* avoid racing with NAPI reading npinfo */
synchronize_rcu();
return 0;
release:
if (!ndev->npinfo) {
spin_lock_irqsave(&npinfo->rx_lock, flags);
list_for_each_entry_safe(npe, tmp, &npinfo->rx_np, rx) {
npe->dev = NULL;
}
spin_unlock_irqrestore(&npinfo->rx_lock, flags);
kfree(npinfo);
}
put:
dev_put(ndev);
return err;
}
static int __init netpoll_init(void)
{
skb_queue_head_init(&skb_pool);
return 0;
}
core_initcall(netpoll_init);
void netpoll_cleanup(struct netpoll *np)
{
struct netpoll_info *npinfo;
unsigned long flags;
if (np->dev) {
npinfo = np->dev->npinfo;
if (npinfo) {
if (!list_empty(&npinfo->rx_np)) {
spin_lock_irqsave(&npinfo->rx_lock, flags);
list_del(&np->rx);
if (list_empty(&npinfo->rx_np))
npinfo->rx_flags &= ~NETPOLL_RX_ENABLED;
spin_unlock_irqrestore(&npinfo->rx_lock, flags);
}
if (atomic_dec_and_test(&npinfo->refcnt)) {
skb_queue_purge(&npinfo->arp_tx);
skb_queue_purge(&npinfo->txq);
cancel_rearming_delayed_work(&npinfo->tx_work);
/* clean after last, unfinished work */
__skb_queue_purge(&npinfo->txq);
kfree(npinfo);
np->dev->npinfo = NULL;
}
}
dev_put(np->dev);
}
np->dev = NULL;
}
int netpoll_trap(void)
{
return atomic_read(&trapped);
}
void netpoll_set_trap(int trap)
{
if (trap)
atomic_inc(&trapped);
else
atomic_dec(&trapped);
}
EXPORT_SYMBOL(netpoll_set_trap);
EXPORT_SYMBOL(netpoll_trap);
EXPORT_SYMBOL(netpoll_print_options);
EXPORT_SYMBOL(netpoll_parse_options);
EXPORT_SYMBOL(netpoll_setup);
EXPORT_SYMBOL(netpoll_cleanup);
EXPORT_SYMBOL(netpoll_send_udp);
EXPORT_SYMBOL(netpoll_poll);