tmp_suning_uos_patched/drivers/rtc/rtc-bfin.c
Mike Frysinger 2c95cd71f8 Blackfin On-Chip RTC driver update for supporting BF54x
Signed-off-by: Mike Frysinger <michael.frysinger@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-07-15 02:33:26 +08:00

446 lines
12 KiB
C

/*
* Blackfin On-Chip Real Time Clock Driver
* Supports BF53[123]/BF53[467]/BF54[2489]
*
* Copyright 2004-2007 Analog Devices Inc.
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Licensed under the GPL-2 or later.
*/
/* The biggest issue we deal with in this driver is that register writes are
* synced to the RTC frequency of 1Hz. So if you write to a register and
* attempt to write again before the first write has completed, the new write
* is simply discarded. This can easily be troublesome if userspace disables
* one event (say periodic) and then right after enables an event (say alarm).
* Since all events are maintained in the same interrupt mask register, if
* we wrote to it to disable the first event and then wrote to it again to
* enable the second event, that second event would not be enabled as the
* write would be discarded and things quickly fall apart.
*
* To keep this delay from significantly degrading performance (we, in theory,
* would have to sleep for up to 1 second everytime we wanted to write a
* register), we only check the write pending status before we start to issue
* a new write. We bank on the idea that it doesnt matter when the sync
* happens so long as we don't attempt another write before it does. The only
* time userspace would take this penalty is when they try and do multiple
* operations right after another ... but in this case, they need to take the
* sync penalty, so we should be OK.
*
* Also note that the RTC_ISTAT register does not suffer this penalty; its
* writes to clear status registers complete immediately.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <asm/blackfin.h>
#define stamp(fmt, args...) pr_debug("%s:%i: " fmt "\n", __FUNCTION__, __LINE__, ## args)
#define stampit() stamp("here i am")
struct bfin_rtc {
struct rtc_device *rtc_dev;
struct rtc_time rtc_alarm;
spinlock_t lock;
};
/* Bit values for the ISTAT / ICTL registers */
#define RTC_ISTAT_WRITE_COMPLETE 0x8000
#define RTC_ISTAT_WRITE_PENDING 0x4000
#define RTC_ISTAT_ALARM_DAY 0x0040
#define RTC_ISTAT_24HR 0x0020
#define RTC_ISTAT_HOUR 0x0010
#define RTC_ISTAT_MIN 0x0008
#define RTC_ISTAT_SEC 0x0004
#define RTC_ISTAT_ALARM 0x0002
#define RTC_ISTAT_STOPWATCH 0x0001
/* Shift values for RTC_STAT register */
#define DAY_BITS_OFF 17
#define HOUR_BITS_OFF 12
#define MIN_BITS_OFF 6
#define SEC_BITS_OFF 0
/* Some helper functions to convert between the common RTC notion of time
* and the internal Blackfin notion that is stored in 32bits.
*/
static inline u32 rtc_time_to_bfin(unsigned long now)
{
u32 sec = (now % 60);
u32 min = (now % (60 * 60)) / 60;
u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
u32 days = (now / (60 * 60 * 24));
return (sec << SEC_BITS_OFF) +
(min << MIN_BITS_OFF) +
(hour << HOUR_BITS_OFF) +
(days << DAY_BITS_OFF);
}
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
{
return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
(((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
(((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
(((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
}
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
{
rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
}
/* Wait for the previous write to a RTC register to complete.
* Unfortunately, we can't sleep here as that introduces a race condition when
* turning on interrupt events. Consider this:
* - process sets alarm
* - process enables alarm
* - process sleeps while waiting for rtc write to sync
* - interrupt fires while process is sleeping
* - interrupt acks the event by writing to ISTAT
* - interrupt sets the WRITE PENDING bit
* - interrupt handler finishes
* - process wakes up, sees WRITE PENDING bit set, goes to sleep
* - interrupt fires while process is sleeping
* If anyone can point out the obvious solution here, i'm listening :). This
* shouldn't be an issue on an SMP or preempt system as this function should
* only be called with the rtc lock held.
*/
static void rtc_bfin_sync_pending(void)
{
stampit();
while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) {
if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
break;
}
bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
}
static void rtc_bfin_reset(struct bfin_rtc *rtc)
{
/* Initialize the RTC. Enable pre-scaler to scale RTC clock
* to 1Hz and clear interrupt/status registers. */
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_PREN(0x1);
bfin_write_RTC_ICTL(0);
bfin_write_RTC_SWCNT(0);
bfin_write_RTC_ALARM(0);
bfin_write_RTC_ISTAT(0xFFFF);
spin_unlock_irq(&rtc->lock);
}
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct bfin_rtc *rtc = platform_get_drvdata(pdev);
unsigned long events = 0;
u16 rtc_istat;
stampit();
spin_lock_irq(&rtc->lock);
rtc_istat = bfin_read_RTC_ISTAT();
if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
events |= RTC_AF | RTC_IRQF;
}
if (rtc_istat & RTC_ISTAT_STOPWATCH) {
bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
events |= RTC_PF | RTC_IRQF;
bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
}
if (rtc_istat & RTC_ISTAT_SEC) {
bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
events |= RTC_UF | RTC_IRQF;
}
rtc_update_irq(rtc->rtc_dev, 1, events);
spin_unlock_irq(&rtc->lock);
return IRQ_HANDLED;
}
static int bfin_rtc_open(struct device *dev)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
int ret;
stampit();
ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_DISABLED, "rtc-bfin", dev);
if (unlikely(ret)) {
dev_err(dev, "request RTC IRQ failed with %d\n", ret);
return ret;
}
rtc_bfin_reset(rtc);
return ret;
}
static void bfin_rtc_release(struct device *dev)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
rtc_bfin_reset(rtc);
free_irq(IRQ_RTC, dev);
}
static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
switch (cmd) {
case RTC_PIE_ON:
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_STOPWATCH);
spin_unlock_irq(&rtc->lock);
return 0;
case RTC_PIE_OFF:
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_SWCNT(0);
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_STOPWATCH);
spin_unlock_irq(&rtc->lock);
return 0;
case RTC_UIE_ON:
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_SEC);
spin_unlock_irq(&rtc->lock);
return 0;
case RTC_UIE_OFF:
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_SEC);
spin_unlock_irq(&rtc->lock);
return 0;
case RTC_AIE_ON: {
unsigned long rtc_alarm;
u16 which_alarm;
int ret = 0;
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
if (rtc->rtc_alarm.tm_yday == -1) {
struct rtc_time now;
rtc_bfin_to_tm(bfin_read_RTC_STAT(), &now);
now.tm_sec = rtc->rtc_alarm.tm_sec;
now.tm_min = rtc->rtc_alarm.tm_min;
now.tm_hour = rtc->rtc_alarm.tm_hour;
ret = rtc_tm_to_time(&now, &rtc_alarm);
which_alarm = RTC_ISTAT_ALARM;
} else {
ret = rtc_tm_to_time(&rtc->rtc_alarm, &rtc_alarm);
which_alarm = RTC_ISTAT_ALARM_DAY;
}
if (ret == 0) {
bfin_write_RTC_ISTAT(which_alarm);
bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | which_alarm);
}
spin_unlock_irq(&rtc->lock);
return ret;
}
case RTC_AIE_OFF:
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
spin_unlock_irq(&rtc->lock);
return 0;
}
return -ENOIOCTLCMD;
}
static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
spin_lock_irq(&rtc->lock);
rtc_bfin_sync_pending();
rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
spin_unlock_irq(&rtc->lock);
return 0;
}
static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
int ret;
unsigned long now;
stampit();
spin_lock_irq(&rtc->lock);
ret = rtc_tm_to_time(tm, &now);
if (ret == 0) {
rtc_bfin_sync_pending();
bfin_write_RTC_STAT(rtc_time_to_bfin(now));
}
spin_unlock_irq(&rtc->lock);
return ret;
}
static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
memcpy(&alrm->time, &rtc->rtc_alarm, sizeof(struct rtc_time));
alrm->pending = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
return 0;
}
static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
memcpy(&rtc->rtc_alarm, &alrm->time, sizeof(struct rtc_time));
return 0;
}
static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
{
#define yesno(x) (x ? "yes" : "no")
u16 ictl = bfin_read_RTC_ICTL();
stampit();
seq_printf(seq, "alarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM));
seq_printf(seq, "wkalarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM_DAY));
seq_printf(seq, "seconds_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_SEC));
seq_printf(seq, "periodic_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_STOPWATCH));
#ifdef DEBUG
seq_printf(seq, "RTC_STAT\t: 0x%08X\n", bfin_read_RTC_STAT());
seq_printf(seq, "RTC_ICTL\t: 0x%04X\n", bfin_read_RTC_ICTL());
seq_printf(seq, "RTC_ISTAT\t: 0x%04X\n", bfin_read_RTC_ISTAT());
seq_printf(seq, "RTC_SWCNT\t: 0x%04X\n", bfin_read_RTC_SWCNT());
seq_printf(seq, "RTC_ALARM\t: 0x%08X\n", bfin_read_RTC_ALARM());
seq_printf(seq, "RTC_PREN\t: 0x%04X\n", bfin_read_RTC_PREN());
#endif
return 0;
}
static int bfin_irq_set_freq(struct device *dev, int freq)
{
struct bfin_rtc *rtc = dev_get_drvdata(dev);
stampit();
rtc->rtc_dev->irq_freq = freq;
return 0;
}
static struct rtc_class_ops bfin_rtc_ops = {
.open = bfin_rtc_open,
.release = bfin_rtc_release,
.ioctl = bfin_rtc_ioctl,
.read_time = bfin_rtc_read_time,
.set_time = bfin_rtc_set_time,
.read_alarm = bfin_rtc_read_alarm,
.set_alarm = bfin_rtc_set_alarm,
.proc = bfin_rtc_proc,
.irq_set_freq = bfin_irq_set_freq,
};
static int __devinit bfin_rtc_probe(struct platform_device *pdev)
{
struct bfin_rtc *rtc;
int ret = 0;
stampit();
rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
if (unlikely(!rtc))
return -ENOMEM;
spin_lock_init(&rtc->lock);
rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE);
if (unlikely(IS_ERR(rtc))) {
ret = PTR_ERR(rtc->rtc_dev);
goto err;
}
rtc->rtc_dev->irq_freq = 0;
rtc->rtc_dev->max_user_freq = (2 << 16); /* stopwatch is an unsigned 16 bit reg */
platform_set_drvdata(pdev, rtc);
return 0;
err:
kfree(rtc);
return ret;
}
static int __devexit bfin_rtc_remove(struct platform_device *pdev)
{
struct bfin_rtc *rtc = platform_get_drvdata(pdev);
rtc_device_unregister(rtc->rtc_dev);
platform_set_drvdata(pdev, NULL);
kfree(rtc);
return 0;
}
static struct platform_driver bfin_rtc_driver = {
.driver = {
.name = "rtc-bfin",
.owner = THIS_MODULE,
},
.probe = bfin_rtc_probe,
.remove = __devexit_p(bfin_rtc_remove),
};
static int __init bfin_rtc_init(void)
{
stampit();
return platform_driver_register(&bfin_rtc_driver);
}
static void __exit bfin_rtc_exit(void)
{
platform_driver_unregister(&bfin_rtc_driver);
}
module_init(bfin_rtc_init);
module_exit(bfin_rtc_exit);
MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
MODULE_LICENSE("GPL");