tmp_suning_uos_patched/mm/list_lru.c
Kirill Tkhai 0c7c1bed7e mm: make counting of list_lru_one::nr_items lockless
During the reclaiming slab of a memcg, shrink_slab iterates over all
registered shrinkers in the system, and tries to count and consume
objects related to the cgroup.  In case of memory pressure, this behaves
bad: I observe high system time and time spent in list_lru_count_one()
for many processes on RHEL7 kernel.

This patch makes list_lru_node::memcg_lrus rcu protected, that allows to
skip taking spinlock in list_lru_count_one().

Shakeel Butt with the patch observes significant perf graph change.  He
says:

========================================================================
Setup: running a fork-bomb in a memcg of 200MiB on a 8GiB and 4 vcpu
VM and recording the trace with 'perf record -g -a'.

The trace without the patch:

+  34.19%     fb.sh  [kernel.kallsyms]  [k] queued_spin_lock_slowpath
+  30.77%     fb.sh  [kernel.kallsyms]  [k] _raw_spin_lock
+   3.53%     fb.sh  [kernel.kallsyms]  [k] list_lru_count_one
+   2.26%     fb.sh  [kernel.kallsyms]  [k] super_cache_count
+   1.68%     fb.sh  [kernel.kallsyms]  [k] shrink_slab
+   0.59%     fb.sh  [kernel.kallsyms]  [k] down_read_trylock
+   0.48%     fb.sh  [kernel.kallsyms]  [k] _raw_spin_unlock_irqrestore
+   0.38%     fb.sh  [kernel.kallsyms]  [k] shrink_node_memcg
+   0.32%     fb.sh  [kernel.kallsyms]  [k] queue_work_on
+   0.26%     fb.sh  [kernel.kallsyms]  [k] count_shadow_nodes

With the patch:

+   0.16%     swapper  [kernel.kallsyms]    [k] default_idle
+   0.13%     oom_reaper  [kernel.kallsyms]    [k] mutex_spin_on_owner
+   0.05%     perf  [kernel.kallsyms]    [k] copy_user_generic_string
+   0.05%     init.real  [kernel.kallsyms]    [k] wait_consider_task
+   0.05%     kworker/0:0  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/2:1  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/3:1  [kernel.kallsyms]    [k] finish_task_switch
+   0.04%     kworker/1:0  [kernel.kallsyms]    [k] finish_task_switch
+   0.03%     binary  [kernel.kallsyms]    [k] copy_page
========================================================================

Thanks Shakeel for the testing.

[ktkhai@virtuozzo.com: v2]
  Link: http://lkml.kernel.org/r/151203869520.3915.2587549826865799173.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/150583358557.26700.8490036563698102569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00

608 lines
13 KiB
C

/*
* Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
* Authors: David Chinner and Glauber Costa
*
* Generic LRU infrastructure
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/list_lru.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/memcontrol.h>
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
static LIST_HEAD(list_lrus);
static DEFINE_MUTEX(list_lrus_mutex);
static void list_lru_register(struct list_lru *lru)
{
mutex_lock(&list_lrus_mutex);
list_add(&lru->list, &list_lrus);
mutex_unlock(&list_lrus_mutex);
}
static void list_lru_unregister(struct list_lru *lru)
{
mutex_lock(&list_lrus_mutex);
list_del(&lru->list);
mutex_unlock(&list_lrus_mutex);
}
#else
static void list_lru_register(struct list_lru *lru)
{
}
static void list_lru_unregister(struct list_lru *lru)
{
}
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
static inline bool list_lru_memcg_aware(struct list_lru *lru)
{
/*
* This needs node 0 to be always present, even
* in the systems supporting sparse numa ids.
*/
return !!lru->node[0].memcg_lrus;
}
static inline struct list_lru_one *
list_lru_from_memcg_idx(struct list_lru_node *nlru, int idx)
{
struct list_lru_memcg *memcg_lrus;
/*
* Either lock or RCU protects the array of per cgroup lists
* from relocation (see memcg_update_list_lru_node).
*/
memcg_lrus = rcu_dereference_check(nlru->memcg_lrus,
lockdep_is_held(&nlru->lock));
if (memcg_lrus && idx >= 0)
return memcg_lrus->lru[idx];
return &nlru->lru;
}
static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
{
struct page *page;
if (!memcg_kmem_enabled())
return NULL;
page = virt_to_head_page(ptr);
return page->mem_cgroup;
}
static inline struct list_lru_one *
list_lru_from_kmem(struct list_lru_node *nlru, void *ptr)
{
struct mem_cgroup *memcg;
if (!nlru->memcg_lrus)
return &nlru->lru;
memcg = mem_cgroup_from_kmem(ptr);
if (!memcg)
return &nlru->lru;
return list_lru_from_memcg_idx(nlru, memcg_cache_id(memcg));
}
#else
static inline bool list_lru_memcg_aware(struct list_lru *lru)
{
return false;
}
static inline struct list_lru_one *
list_lru_from_memcg_idx(struct list_lru_node *nlru, int idx)
{
return &nlru->lru;
}
static inline struct list_lru_one *
list_lru_from_kmem(struct list_lru_node *nlru, void *ptr)
{
return &nlru->lru;
}
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
bool list_lru_add(struct list_lru *lru, struct list_head *item)
{
int nid = page_to_nid(virt_to_page(item));
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
spin_lock(&nlru->lock);
if (list_empty(item)) {
l = list_lru_from_kmem(nlru, item);
list_add_tail(item, &l->list);
l->nr_items++;
nlru->nr_items++;
spin_unlock(&nlru->lock);
return true;
}
spin_unlock(&nlru->lock);
return false;
}
EXPORT_SYMBOL_GPL(list_lru_add);
bool list_lru_del(struct list_lru *lru, struct list_head *item)
{
int nid = page_to_nid(virt_to_page(item));
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
spin_lock(&nlru->lock);
if (!list_empty(item)) {
l = list_lru_from_kmem(nlru, item);
list_del_init(item);
l->nr_items--;
nlru->nr_items--;
spin_unlock(&nlru->lock);
return true;
}
spin_unlock(&nlru->lock);
return false;
}
EXPORT_SYMBOL_GPL(list_lru_del);
void list_lru_isolate(struct list_lru_one *list, struct list_head *item)
{
list_del_init(item);
list->nr_items--;
}
EXPORT_SYMBOL_GPL(list_lru_isolate);
void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item,
struct list_head *head)
{
list_move(item, head);
list->nr_items--;
}
EXPORT_SYMBOL_GPL(list_lru_isolate_move);
static unsigned long __list_lru_count_one(struct list_lru *lru,
int nid, int memcg_idx)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
unsigned long count;
rcu_read_lock();
l = list_lru_from_memcg_idx(nlru, memcg_idx);
count = l->nr_items;
rcu_read_unlock();
return count;
}
unsigned long list_lru_count_one(struct list_lru *lru,
int nid, struct mem_cgroup *memcg)
{
return __list_lru_count_one(lru, nid, memcg_cache_id(memcg));
}
EXPORT_SYMBOL_GPL(list_lru_count_one);
unsigned long list_lru_count_node(struct list_lru *lru, int nid)
{
struct list_lru_node *nlru;
nlru = &lru->node[nid];
return nlru->nr_items;
}
EXPORT_SYMBOL_GPL(list_lru_count_node);
static unsigned long
__list_lru_walk_one(struct list_lru *lru, int nid, int memcg_idx,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
struct list_lru_node *nlru = &lru->node[nid];
struct list_lru_one *l;
struct list_head *item, *n;
unsigned long isolated = 0;
spin_lock(&nlru->lock);
l = list_lru_from_memcg_idx(nlru, memcg_idx);
restart:
list_for_each_safe(item, n, &l->list) {
enum lru_status ret;
/*
* decrement nr_to_walk first so that we don't livelock if we
* get stuck on large numbesr of LRU_RETRY items
*/
if (!*nr_to_walk)
break;
--*nr_to_walk;
ret = isolate(item, l, &nlru->lock, cb_arg);
switch (ret) {
case LRU_REMOVED_RETRY:
assert_spin_locked(&nlru->lock);
/* fall through */
case LRU_REMOVED:
isolated++;
nlru->nr_items--;
/*
* If the lru lock has been dropped, our list
* traversal is now invalid and so we have to
* restart from scratch.
*/
if (ret == LRU_REMOVED_RETRY)
goto restart;
break;
case LRU_ROTATE:
list_move_tail(item, &l->list);
break;
case LRU_SKIP:
break;
case LRU_RETRY:
/*
* The lru lock has been dropped, our list traversal is
* now invalid and so we have to restart from scratch.
*/
assert_spin_locked(&nlru->lock);
goto restart;
default:
BUG();
}
}
spin_unlock(&nlru->lock);
return isolated;
}
unsigned long
list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
return __list_lru_walk_one(lru, nid, memcg_cache_id(memcg),
isolate, cb_arg, nr_to_walk);
}
EXPORT_SYMBOL_GPL(list_lru_walk_one);
unsigned long list_lru_walk_node(struct list_lru *lru, int nid,
list_lru_walk_cb isolate, void *cb_arg,
unsigned long *nr_to_walk)
{
long isolated = 0;
int memcg_idx;
isolated += __list_lru_walk_one(lru, nid, -1, isolate, cb_arg,
nr_to_walk);
if (*nr_to_walk > 0 && list_lru_memcg_aware(lru)) {
for_each_memcg_cache_index(memcg_idx) {
isolated += __list_lru_walk_one(lru, nid, memcg_idx,
isolate, cb_arg, nr_to_walk);
if (*nr_to_walk <= 0)
break;
}
}
return isolated;
}
EXPORT_SYMBOL_GPL(list_lru_walk_node);
static void init_one_lru(struct list_lru_one *l)
{
INIT_LIST_HEAD(&l->list);
l->nr_items = 0;
}
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
static void __memcg_destroy_list_lru_node(struct list_lru_memcg *memcg_lrus,
int begin, int end)
{
int i;
for (i = begin; i < end; i++)
kfree(memcg_lrus->lru[i]);
}
static int __memcg_init_list_lru_node(struct list_lru_memcg *memcg_lrus,
int begin, int end)
{
int i;
for (i = begin; i < end; i++) {
struct list_lru_one *l;
l = kmalloc(sizeof(struct list_lru_one), GFP_KERNEL);
if (!l)
goto fail;
init_one_lru(l);
memcg_lrus->lru[i] = l;
}
return 0;
fail:
__memcg_destroy_list_lru_node(memcg_lrus, begin, i - 1);
return -ENOMEM;
}
static int memcg_init_list_lru_node(struct list_lru_node *nlru)
{
struct list_lru_memcg *memcg_lrus;
int size = memcg_nr_cache_ids;
memcg_lrus = kvmalloc(sizeof(*memcg_lrus) +
size * sizeof(void *), GFP_KERNEL);
if (!memcg_lrus)
return -ENOMEM;
if (__memcg_init_list_lru_node(memcg_lrus, 0, size)) {
kvfree(memcg_lrus);
return -ENOMEM;
}
RCU_INIT_POINTER(nlru->memcg_lrus, memcg_lrus);
return 0;
}
static void memcg_destroy_list_lru_node(struct list_lru_node *nlru)
{
struct list_lru_memcg *memcg_lrus;
/*
* This is called when shrinker has already been unregistered,
* and nobody can use it. So, there is no need to use kvfree_rcu().
*/
memcg_lrus = rcu_dereference_protected(nlru->memcg_lrus, true);
__memcg_destroy_list_lru_node(memcg_lrus, 0, memcg_nr_cache_ids);
kvfree(memcg_lrus);
}
static void kvfree_rcu(struct rcu_head *head)
{
struct list_lru_memcg *mlru;
mlru = container_of(head, struct list_lru_memcg, rcu);
kvfree(mlru);
}
static int memcg_update_list_lru_node(struct list_lru_node *nlru,
int old_size, int new_size)
{
struct list_lru_memcg *old, *new;
BUG_ON(old_size > new_size);
old = rcu_dereference_protected(nlru->memcg_lrus,
lockdep_is_held(&list_lrus_mutex));
new = kvmalloc(sizeof(*new) + new_size * sizeof(void *), GFP_KERNEL);
if (!new)
return -ENOMEM;
if (__memcg_init_list_lru_node(new, old_size, new_size)) {
kvfree(new);
return -ENOMEM;
}
memcpy(&new->lru, &old->lru, old_size * sizeof(void *));
/*
* The locking below allows readers that hold nlru->lock avoid taking
* rcu_read_lock (see list_lru_from_memcg_idx).
*
* Since list_lru_{add,del} may be called under an IRQ-safe lock,
* we have to use IRQ-safe primitives here to avoid deadlock.
*/
spin_lock_irq(&nlru->lock);
rcu_assign_pointer(nlru->memcg_lrus, new);
spin_unlock_irq(&nlru->lock);
call_rcu(&old->rcu, kvfree_rcu);
return 0;
}
static void memcg_cancel_update_list_lru_node(struct list_lru_node *nlru,
int old_size, int new_size)
{
struct list_lru_memcg *memcg_lrus;
memcg_lrus = rcu_dereference_protected(nlru->memcg_lrus,
lockdep_is_held(&list_lrus_mutex));
/* do not bother shrinking the array back to the old size, because we
* cannot handle allocation failures here */
__memcg_destroy_list_lru_node(memcg_lrus, old_size, new_size);
}
static int memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
{
int i;
if (!memcg_aware)
return 0;
for_each_node(i) {
if (memcg_init_list_lru_node(&lru->node[i]))
goto fail;
}
return 0;
fail:
for (i = i - 1; i >= 0; i--) {
if (!lru->node[i].memcg_lrus)
continue;
memcg_destroy_list_lru_node(&lru->node[i]);
}
return -ENOMEM;
}
static void memcg_destroy_list_lru(struct list_lru *lru)
{
int i;
if (!list_lru_memcg_aware(lru))
return;
for_each_node(i)
memcg_destroy_list_lru_node(&lru->node[i]);
}
static int memcg_update_list_lru(struct list_lru *lru,
int old_size, int new_size)
{
int i;
if (!list_lru_memcg_aware(lru))
return 0;
for_each_node(i) {
if (memcg_update_list_lru_node(&lru->node[i],
old_size, new_size))
goto fail;
}
return 0;
fail:
for (i = i - 1; i >= 0; i--) {
if (!lru->node[i].memcg_lrus)
continue;
memcg_cancel_update_list_lru_node(&lru->node[i],
old_size, new_size);
}
return -ENOMEM;
}
static void memcg_cancel_update_list_lru(struct list_lru *lru,
int old_size, int new_size)
{
int i;
if (!list_lru_memcg_aware(lru))
return;
for_each_node(i)
memcg_cancel_update_list_lru_node(&lru->node[i],
old_size, new_size);
}
int memcg_update_all_list_lrus(int new_size)
{
int ret = 0;
struct list_lru *lru;
int old_size = memcg_nr_cache_ids;
mutex_lock(&list_lrus_mutex);
list_for_each_entry(lru, &list_lrus, list) {
ret = memcg_update_list_lru(lru, old_size, new_size);
if (ret)
goto fail;
}
out:
mutex_unlock(&list_lrus_mutex);
return ret;
fail:
list_for_each_entry_continue_reverse(lru, &list_lrus, list)
memcg_cancel_update_list_lru(lru, old_size, new_size);
goto out;
}
static void memcg_drain_list_lru_node(struct list_lru_node *nlru,
int src_idx, int dst_idx)
{
struct list_lru_one *src, *dst;
/*
* Since list_lru_{add,del} may be called under an IRQ-safe lock,
* we have to use IRQ-safe primitives here to avoid deadlock.
*/
spin_lock_irq(&nlru->lock);
src = list_lru_from_memcg_idx(nlru, src_idx);
dst = list_lru_from_memcg_idx(nlru, dst_idx);
list_splice_init(&src->list, &dst->list);
dst->nr_items += src->nr_items;
src->nr_items = 0;
spin_unlock_irq(&nlru->lock);
}
static void memcg_drain_list_lru(struct list_lru *lru,
int src_idx, int dst_idx)
{
int i;
if (!list_lru_memcg_aware(lru))
return;
for_each_node(i)
memcg_drain_list_lru_node(&lru->node[i], src_idx, dst_idx);
}
void memcg_drain_all_list_lrus(int src_idx, int dst_idx)
{
struct list_lru *lru;
mutex_lock(&list_lrus_mutex);
list_for_each_entry(lru, &list_lrus, list)
memcg_drain_list_lru(lru, src_idx, dst_idx);
mutex_unlock(&list_lrus_mutex);
}
#else
static int memcg_init_list_lru(struct list_lru *lru, bool memcg_aware)
{
return 0;
}
static void memcg_destroy_list_lru(struct list_lru *lru)
{
}
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
int __list_lru_init(struct list_lru *lru, bool memcg_aware,
struct lock_class_key *key)
{
int i;
size_t size = sizeof(*lru->node) * nr_node_ids;
int err = -ENOMEM;
memcg_get_cache_ids();
lru->node = kzalloc(size, GFP_KERNEL);
if (!lru->node)
goto out;
for_each_node(i) {
spin_lock_init(&lru->node[i].lock);
if (key)
lockdep_set_class(&lru->node[i].lock, key);
init_one_lru(&lru->node[i].lru);
}
err = memcg_init_list_lru(lru, memcg_aware);
if (err) {
kfree(lru->node);
/* Do this so a list_lru_destroy() doesn't crash: */
lru->node = NULL;
goto out;
}
list_lru_register(lru);
out:
memcg_put_cache_ids();
return err;
}
EXPORT_SYMBOL_GPL(__list_lru_init);
void list_lru_destroy(struct list_lru *lru)
{
/* Already destroyed or not yet initialized? */
if (!lru->node)
return;
memcg_get_cache_ids();
list_lru_unregister(lru);
memcg_destroy_list_lru(lru);
kfree(lru->node);
lru->node = NULL;
memcg_put_cache_ids();
}
EXPORT_SYMBOL_GPL(list_lru_destroy);