tmp_suning_uos_patched/fs/f2fs/checkpoint.c
Gu Zheng 0d47c1adc2 f2fs: convert max_orphans to a field of f2fs_sb_info
Previously, we need to calculate the max orphan num when we try to acquire an
orphan inode, but it's a stable value since the super block was inited. So
converting it to a field of f2fs_sb_info and use it directly when needed seems
a better choose.

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-12-26 20:37:52 +09:00

859 lines
22 KiB
C

/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *orphan_entry_slab;
static struct kmem_cache *inode_entry_slab;
/*
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page = NULL;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
/* We wait writeback only inside grab_meta_page() */
wait_on_page_writeback(page);
SetPageUptodate(page);
return page;
}
/*
* We guarantee no failure on the returned page.
*/
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
struct page *page;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
if (f2fs_submit_page_bio(sbi, page, index,
READ_SYNC | REQ_META | REQ_PRIO))
goto repeat;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
out:
mark_page_accessed(page);
return page;
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
/* Should not write any meta pages, if any IO error was occurred */
if (unlikely(sbi->por_doing ||
is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
goto redirty_out;
if (wbc->for_reclaim)
goto redirty_out;
wait_on_page_writeback(page);
write_meta_page(sbi, page);
dec_page_count(sbi, F2FS_DIRTY_META);
unlock_page(page);
return 0;
redirty_out:
dec_page_count(sbi, F2FS_DIRTY_META);
wbc->pages_skipped++;
set_page_dirty(page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
long written;
if (wbc->for_kupdate)
return 0;
/* collect a number of dirty meta pages and write together */
if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
return 0;
/* if mounting is failed, skip writing node pages */
mutex_lock(&sbi->cp_mutex);
written = sync_meta_pages(sbi, META, nrpages);
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write -= written;
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = sbi->meta_inode->i_mapping;
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (unlikely(nr_pages == 0))
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
lock_page(page);
f2fs_bug_on(page->mapping != mapping);
f2fs_bug_on(!PageDirty(page));
clear_page_dirty_for_io(page);
if (f2fs_write_meta_page(page, &wbc)) {
unlock_page(page);
break;
}
nwritten++;
if (unlikely(nwritten >= nr_to_write))
break;
}
pagevec_release(&pvec);
cond_resched();
}
if (nwritten)
f2fs_submit_merged_bio(sbi, type, WRITE);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
trace_f2fs_set_page_dirty(page, META);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(sbi, F2FS_DIRTY_META);
return 1;
}
return 0;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
};
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
int err = 0;
mutex_lock(&sbi->orphan_inode_mutex);
if (unlikely(sbi->n_orphans >= sbi->max_orphans))
err = -ENOSPC;
else
sbi->n_orphans++;
mutex_unlock(&sbi->orphan_inode_mutex);
return err;
}
void release_orphan_inode(struct f2fs_sb_info *sbi)
{
mutex_lock(&sbi->orphan_inode_mutex);
f2fs_bug_on(sbi->n_orphans == 0);
sbi->n_orphans--;
mutex_unlock(&sbi->orphan_inode_mutex);
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *head, *this;
struct orphan_inode_entry *new = NULL, *orphan = NULL;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each(this, head) {
orphan = list_entry(this, struct orphan_inode_entry, list);
if (orphan->ino == ino)
goto out;
if (orphan->ino > ino)
break;
orphan = NULL;
}
new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
new->ino = ino;
/* add new_oentry into list which is sorted by inode number */
if (orphan)
list_add(&new->list, this->prev);
else
list_add_tail(&new->list, head);
out:
mutex_unlock(&sbi->orphan_inode_mutex);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *head;
struct orphan_inode_entry *orphan;
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
list_for_each_entry(orphan, head, list) {
if (orphan->ino == ino) {
list_del(&orphan->list);
kmem_cache_free(orphan_entry_slab, orphan);
f2fs_bug_on(sbi->n_orphans == 0);
sbi->n_orphans--;
break;
}
}
mutex_unlock(&sbi->orphan_inode_mutex);
}
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode = f2fs_iget(sbi->sb, ino);
f2fs_bug_on(IS_ERR(inode));
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
}
void recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blkaddr, i, j;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return;
sbi->por_doing = true;
start_blk = __start_cp_addr(sbi) + 1;
orphan_blkaddr = __start_sum_addr(sbi) - 1;
for (i = 0; i < orphan_blkaddr; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
recover_orphan_inode(sbi, ino);
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
sbi->por_doing = false;
return;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head;
struct f2fs_orphan_block *orphan_blk = NULL;
struct page *page = NULL;
unsigned int nentries = 0;
unsigned short index = 1;
unsigned short orphan_blocks;
struct orphan_inode_entry *orphan = NULL;
orphan_blocks = (unsigned short)((sbi->n_orphans +
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
mutex_lock(&sbi->orphan_inode_mutex);
head = &sbi->orphan_inode_list;
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_entry(orphan, head, list) {
if (!page) {
page = grab_meta_page(sbi, start_blk);
orphan_blk =
(struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
}
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
start_blk++;
nentries = 0;
page = NULL;
}
}
if (page) {
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
mutex_unlock(&sbi->orphan_inode_mutex);
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1, *cp_page_2 = NULL;
unsigned long blk_size = sbi->blocksize;
struct f2fs_checkpoint *cp_block;
unsigned long long cur_version = 0, pre_version = 0;
size_t crc_offset;
__u32 crc = 0;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_meta_page(sbi, cp_addr);
/* get the version number */
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = cur_cp_version(cp_block);
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
cp_page_2 = get_meta_page(sbi, cp_addr);
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = cur_cp_version(cp_block);
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += ((unsigned long long)1) <<
le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *head = &sbi->dir_inode_list;
struct list_head *this;
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (unlikely(entry->inode == inode))
return -EEXIST;
}
list_add_tail(&new->list, head);
stat_inc_dirty_dir(sbi);
return 0;
}
void set_dirty_dir_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct dir_inode_entry *new;
if (!S_ISDIR(inode->i_mode))
return;
new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
if (__add_dirty_inode(inode, new))
kmem_cache_free(inode_entry_slab, new);
inc_page_count(sbi, F2FS_DIRTY_DENTS);
inode_inc_dirty_dents(inode);
SetPagePrivate(page);
spin_unlock(&sbi->dir_inode_lock);
}
void add_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct dir_inode_entry *new =
f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
if (__add_dirty_inode(inode, new))
kmem_cache_free(inode_entry_slab, new);
spin_unlock(&sbi->dir_inode_lock);
}
void remove_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct list_head *this, *head;
if (!S_ISDIR(inode->i_mode))
return;
spin_lock(&sbi->dir_inode_lock);
if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
head = &sbi->dir_inode_list;
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode == inode) {
list_del(&entry->list);
kmem_cache_free(inode_entry_slab, entry);
stat_dec_dirty_dir(sbi);
break;
}
}
spin_unlock(&sbi->dir_inode_lock);
/* Only from the recovery routine */
if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
iput(inode);
}
}
struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct list_head *this, *head;
struct inode *inode = NULL;
spin_lock(&sbi->dir_inode_lock);
head = &sbi->dir_inode_list;
list_for_each(this, head) {
struct dir_inode_entry *entry;
entry = list_entry(this, struct dir_inode_entry, list);
if (entry->inode->i_ino == ino) {
inode = entry->inode;
break;
}
}
spin_unlock(&sbi->dir_inode_lock);
return inode;
}
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
{
struct list_head *head;
struct dir_inode_entry *entry;
struct inode *inode;
retry:
spin_lock(&sbi->dir_inode_lock);
head = &sbi->dir_inode_list;
if (list_empty(head)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = list_entry(head->next, struct dir_inode_entry, list);
inode = igrab(entry->inode);
spin_unlock(&sbi->dir_inode_lock);
if (inode) {
filemap_flush(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_merged_bio(sbi, DATA, WRITE);
}
goto retry;
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static void block_operations(struct f2fs_sb_info *sbi)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
struct blk_plug plug;
blk_start_plug(&plug);
retry_flush_dents:
f2fs_lock_all(sbi);
/* write all the dirty dentry pages */
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
f2fs_unlock_all(sbi);
sync_dirty_dir_inodes(sbi);
goto retry_flush_dents;
}
/*
* POR: we should ensure that there is no dirty node pages
* until finishing nat/sit flush.
*/
retry_flush_nodes:
mutex_lock(&sbi->node_write);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
mutex_unlock(&sbi->node_write);
sync_node_pages(sbi, 0, &wbc);
goto retry_flush_nodes;
}
blk_finish_plug(&plug);
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
mutex_unlock(&sbi->node_write);
f2fs_unlock_all(sbi);
}
static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
if (!get_pages(sbi, F2FS_WRITEBACK))
break;
io_schedule();
}
finish_wait(&sbi->cp_wait, &wait);
}
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
nid_t last_nid = 0;
block_t start_blk;
struct page *cp_page;
unsigned int data_sum_blocks, orphan_blocks;
__u32 crc32 = 0;
void *kaddr;
int i;
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META))
sync_meta_pages(sbi, META, LONG_MAX);
next_free_nid(sbi, &last_nid);
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < 3; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < 3; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi);
if (data_sum_blocks < 3)
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
/ F2FS_ORPHANS_PER_BLOCK;
ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
if (is_umount) {
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
} else {
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
data_sum_blocks + orphan_blocks);
}
if (sbi->n_orphans)
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
*((__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset)))
= cpu_to_le32(crc32);
start_blk = __start_cp_addr(sbi);
/* write out checkpoint buffer at block 0 */
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
if (sbi->n_orphans) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
if (is_umount) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
cp_page = grab_meta_page(sbi, start_blk);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
/* wait for previous submitted node/meta pages writeback */
wait_on_all_pages_writeback(sbi);
filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
/* Here, we only have one bio having CP pack */
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
clear_prefree_segments(sbi);
F2FS_RESET_SB_DIRT(sbi);
}
}
/*
* We guarantee that this checkpoint procedure should not fail.
*/
void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
mutex_lock(&sbi->cp_mutex);
block_operations(sbi);
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
f2fs_submit_merged_bio(sbi, DATA, WRITE);
f2fs_submit_merged_bio(sbi, NODE, WRITE);
f2fs_submit_merged_bio(sbi, META, WRITE);
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi);
flush_sit_entries(sbi);
/* unlock all the fs_lock[] in do_checkpoint() */
do_checkpoint(sbi, is_umount);
unblock_operations(sbi);
mutex_unlock(&sbi->cp_mutex);
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
}
void init_orphan_info(struct f2fs_sb_info *sbi)
{
mutex_init(&sbi->orphan_inode_mutex);
INIT_LIST_HEAD(&sbi->orphan_inode_list);
sbi->n_orphans = 0;
/*
* considering 512 blocks in a segment 8 blocks are needed for cp
* and log segment summaries. Remaining blocks are used to keep
* orphan entries with the limitation one reserved segment
* for cp pack we can have max 1020*504 orphan entries
*/
sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
* F2FS_ORPHANS_PER_BLOCK;
}
int __init create_checkpoint_caches(void)
{
orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
sizeof(struct orphan_inode_entry), NULL);
if (!orphan_entry_slab)
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
sizeof(struct dir_inode_entry), NULL);
if (!inode_entry_slab) {
kmem_cache_destroy(orphan_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(orphan_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}