Currently, smp_processor_id() is used to fetch the current CPU in
cpu_idle_loop(). Every time the idle thread runs, it fetches the
current CPU using smp_processor_id().
Since the idle thread is per CPU, the current CPU is constant, so we
can lift the load out of the loop, saving execution cycles/time in the
loop.
x86-64:
Before patch (execution in loop):
148: 0f ae e8 lfence
14b: 65 8b 04 25 00 00 00 00 mov %gs:0x0,%eax
152: 00
153: 89 c0 mov %eax,%eax
155: 49 0f a3 04 24 bt %rax,(%r12)
After patch (execution in loop):
150: 0f ae e8 lfence
153: 4d 0f a3 34 24 bt %r14,(%r12)
ARM64:
Before patch (execution in loop):
168: d5033d9f dsb ld
16c: b9405661 ldr w1,[x19,#84]
170: 1100fc20 add w0,w1,#0x3f
174: 6b1f003f cmp w1,wzr
178: 1a81b000 csel w0,w0,w1,lt
17c: 130c7000 asr w0,w0,#6
180: 937d7c00 sbfiz x0,x0,#3,#32
184: f8606aa0 ldr x0,[x21,x0]
188: 9ac12401 lsr x1,x0,x1
18c: 36000e61 tbz w1,#0,358
After patch (execution in loop):
1a8: d50339df dsb ld
1ac: f8776ac0 ldr x0,[x22,x23]
ab0: ea18001f tst x0,x24
1b4: 54000ea0 b.eq 388
Further observance on ARM64 for 4 seconds shows that cpu_idle_loop is
called 8672 times. Shifting the code will save instructions executed
in loop and eventually time as well.
Signed-off-by: Gaurav Jindal <gaurav.jindal@spreadtrum.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sanjeev Yadav <sanjeev.yadav@spreadtrum.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160512101330.GA488@gauravjindalubtnb.del.spreadtrum.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two minor fixes for cfs_rq_clock_task():
1) If cfs_rq is currently being throttled, we need to subtract the cfs
throttled clock time.
2) Make "throttled_clock_task_time" update SMP unrelated. Now UP cases
need it as well.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1462885398-14724-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Create a new helper to avoid code duplication across governors.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The design of the cpufreq governor API is not very straightforward,
as struct cpufreq_governor provides only one callback to be invoked
from different code paths for different purposes. The purpose it is
invoked for is determined by its second "event" argument, causing it
to act as a "callback multiplexer" of sorts.
Unfortunately, that leads to extra complexity in governors, some of
which implement the ->governor() callback as a switch statement
that simply checks the event argument and invokes a separate function
to handle that specific event.
That extra complexity can be eliminated by replacing the all-purpose
->governor() callback with a family of callbacks to carry out specific
governor operations: initialization and exit, start and stop and policy
limits updates. That also turns out to reduce the code size too, so
do it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
The cpuidle_devices per-CPU variable is only defined when CPU_IDLE is
enabled. Commit c8cc7d4de7 ("sched/idle: Reorganize the idle loop")
removed the #ifdef CONFIG_CPU_IDLE around cpuidle_idle_call() with the
compiler optimising away __this_cpu_read(cpuidle_devices). However, with
CONFIG_UBSAN && !CONFIG_CPU_IDLE, this optimisation no longer happens
and the kernel fails to link since cpuidle_devices is not defined.
This patch introduces an accessor function for the current CPU cpuidle
device (returning NULL when !CONFIG_CPU_IDLE) and uses it in
cpuidle_idle_call().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: 4.5+ <stable@vger.kernel.org> # 4.5+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull scheduler fixes from Ingo Molnar:
"Two fixes: one for a lost wakeup, the other to fix the compiler
optimizing out preempt operations on ARM64 (and possibly other non-x86
architectures)"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Fix remote wakeups
sched/preempt: Fix preempt_count manipulations
Commit:
b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")
... introduced a bug: Mike Galbraith found that it introduced a
performance regression, while Paul E. McKenney reported lost
wakeups and bisected it to this commit.
The reason is that I mis-read ttwu_queue() such that I assumed any
wakeup that got a remote queue must have had the task migrated.
Since this is not so; we need to transfer this information between
queueing the wakeup and actually doing the wakeup. Use a new
task_struct::sched_flag for this, we already write to
sched_contributes_to_load in the wakeup path so this is a hot and
modified cacheline.
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Segall <bsegall@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Fixes: b5179ac70d ("sched/fair: Prepare to fix fairness problems on migration")
Link: http://lkml.kernel.org/r/20160523091907.GD15728@worktop.ger.corp.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Prefix print messages with KBUILD_MODNAME, i.e 'cpufreq_schedutil: '.
This helps to keep similar formatting for all the print messages
particular to a file and identify those easily in kernel logs.
Its already done this way for rest of the governors.
Along with that, remove the (now) redundant bits from a print message.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- New cpufreq "schedutil" governor (making decisions based on CPU
utilization information provided by the scheduler and capable of
switching CPU frequencies right away if the underlying driver
supports that) and support for fast frequency switching in the
acpi-cpufreq driver (Rafael Wysocki).
- Consolidation of CPU frequency management on ARM platforms allowing
them to get rid of some platform-specific boilerplate code if they
are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
Marc Gonzalez).
- Support for ACPI _PPC and CPU frequency limits in the intel_pstate
driver (Srinivas Pandruvada).
- Fixes and cleanups in the cpufreq core and generic governor code
(Rafael Wysocki, Sai Gurrappadi).
- intel_pstate driver optimizations and cleanups (Rafael Wysocki,
Philippe Longepe, Chen Yu, Joe Perches).
- cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
Bhat).
- cpufreq qoriq driver fixes and cleanups (Jia Hongtao).
- ACPI cpufreq driver cleanups (Viresh Kumar).
- Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla).
- Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann).
- Fixes and cleanups in the OPP (Operating Performance Points)
framework, mostly related to OPP sharing, and reorganization of
OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla).
- New "passive" governor for devfreq (for SoC subsystems that will
rely on someone else for the management of their power resources)
and consolidation of devfreq support for Exynos platforms, coding
style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham).
- PM core fixes and cleanups, mostly to make it work better with the
generic power domains (genpd) framework, and updates for that
framework (Ulf Hansson, Thierry Reding, Colin Ian King).
- Intel Broxton support for the intel_idle driver (Len Brown).
- cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach).
- ARM cpuidle cleanups (Jisheng Zhang).
- Intel Kabylake support for the RAPL power capping driver (Jacob Pan).
- AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
Stuebner).
- Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
Mattia Dongili, Thomas Renninger).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJXOjLgAAoJEILEb/54YlRxfn0P/RbSPpNlUNBIE8DFrdD9jRdJ
TIpZ7uiHi9tU1ZF17UBbb/SwuWfYVnVmiorZGRfFOtGaoqh0HFZ/nplDz99rK0ku
vW2OnbojMQEUMU3IcUT1y4BsSl0H23f7ZOKrdprALeWxDQmbgnYjrE6vkX6hRtld
A8eeZvIEJ5CzV8S+9aOOOpojW2yXk5dYGdZ7gpQdoM0n7zVLyPnNucJoha3BYmOG
FwKEIe05RpIhfLfGT0CXIRcOzwAZ6ZWKgOrXUrx/AadPbvu/TP9zkI0djYI8ukyv
z2oiO/GExoeGVuUzvy8vY5SiH4NQvViftFzMZepcsmjxmVglohMPRL8VLjZIBckk
DDcqH9e0OQI20jjYT1vIf5+JWBvLxuQfGtyzI0S+sE/elB1zI/3O8p+8N2CuF5n+
my2dawIewnHI/0AdSpJ+K7DVrfwPHAX19axtPX3dJSLh2OuHCPNlAtbxRGAriBfH
Zv9NETxlrch69o2AD4K54DErWV1FsYLznzK5Zms6MC2Ispbb+oiYpacTlZblznvb
H5U2SSNlA5Niir3vVJ01nKRtzxlWoi67CQxbYrGhlaR0nTTxf9HqWgcSiTZrn7Pv
hs+LA2aUfMf3JGjStdORS7S8biQSid5vypfkglpWLZBKHNC9BqqZd9gSM+jF3FVh
ps4mMM4UXY4hnoFDkMBI
=WM89
-----END PGP SIGNATURE-----
Merge tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The majority of changes go into the cpufreq subsystem this time.
To me, quite obviously, the biggest ticket item is the new "schedutil"
governor. Interestingly enough, it's the first new cpufreq governor
since the beginning of the git era (except for some out-of-the-tree
ones).
There are two main differences between it and the existing governors.
First, it uses the information provided by the scheduler directly for
making its decisions, so it doesn't have to track anything by itself.
Second, it can invoke drivers (supporting that feature) to adjust CPU
performance right away without having to spawn work items to be
executed in process context or similar. Currently, the acpi-cpufreq
driver is the only one supporting that mode of operation, but then it
is used on a large number of systems.
The "schedutil" governor as included here is very simple and mostly
regarded as a foundation for future work on the integration of the
scheduler with CPU power management (in fact, there is work in
progress on top of it already). Nevertheless it works and the
preliminary results obtained with it are encouraging.
There also is some consolidation of CPU frequency management for ARM
platforms that can add their machine IDs the the new stub dt-platdev
driver now and that will take care of creating the requisite platform
device for cpufreq-dt, so it is not necessary to do that in platform
code any more. Several ARM platforms are switched over to using this
generic mechanism.
In addition to that, the intel_pstate driver is now going to respect
CPU frequency limits set by the platform firmware (or a BMC) and
provided via the ACPI _PPC object.
The devfreq subsystem is getting a new "passive" governor for SoCs
subsystems that will depend on somebody else to manage their voltage
rails and its support for Samsung Exynos SoCs is consolidated.
The rest is support for new hardware (Intel Broxton support in
intel_idle for one example), bug fixes, optimizations and cleanups in
a number of places.
Specifics:
- New cpufreq "schedutil" governor (making decisions based on CPU
utilization information provided by the scheduler and capable of
switching CPU frequencies right away if the underlying driver
supports that) and support for fast frequency switching in the
acpi-cpufreq driver (Rafael Wysocki)
- Consolidation of CPU frequency management on ARM platforms allowing
them to get rid of some platform-specific boilerplate code if they
are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
Marc Gonzalez)
- Support for ACPI _PPC and CPU frequency limits in the intel_pstate
driver (Srinivas Pandruvada)
- Fixes and cleanups in the cpufreq core and generic governor code
(Rafael Wysocki, Sai Gurrappadi)
- intel_pstate driver optimizations and cleanups (Rafael Wysocki,
Philippe Longepe, Chen Yu, Joe Perches)
- cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
Bhat)
- cpufreq qoriq driver fixes and cleanups (Jia Hongtao)
- ACPI cpufreq driver cleanups (Viresh Kumar)
- Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla)
- Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann)
- Fixes and cleanups in the OPP (Operating Performance Points)
framework, mostly related to OPP sharing, and reorganization of
OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla)
- New "passive" governor for devfreq (for SoC subsystems that will
rely on someone else for the management of their power resources)
and consolidation of devfreq support for Exynos platforms, coding
style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham)
- PM core fixes and cleanups, mostly to make it work better with the
generic power domains (genpd) framework, and updates for that
framework (Ulf Hansson, Thierry Reding, Colin Ian King)
- Intel Broxton support for the intel_idle driver (Len Brown)
- cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach)
- ARM cpuidle cleanups (Jisheng Zhang)
- Intel Kabylake support for the RAPL power capping driver (Jacob
Pan)
- AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
Stuebner)
- Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
Mattia Dongili, Thomas Renninger)"
* tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (112 commits)
intel_pstate: Clean up get_target_pstate_use_performance()
intel_pstate: Use sample.core_avg_perf in get_avg_pstate()
intel_pstate: Clarify average performance computation
intel_pstate: Avoid unnecessary synchronize_sched() during initialization
cpufreq: schedutil: Make default depend on CONFIG_SMP
cpufreq: powernv: del_timer_sync when global and local pstate are equal
cpufreq: powernv: Move smp_call_function_any() out of irq safe block
intel_pstate: Clean up intel_pstate_get()
cpufreq: schedutil: Make it depend on CONFIG_SMP
cpufreq: governor: Fix handling of special cases in dbs_update()
PM / OPP: Move CONFIG_OF dependent code in a separate file
cpufreq: intel_pstate: Ignore _PPC processing under HWP
cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table
PM / OPP: add non-OF versions of dev_pm_opp_{cpumask_, }remove_table
cpufreq: tango: Use generic platdev driver
PM / OPP: pass cpumask by reference
cpufreq: Fix GOV_LIMITS handling for the userspace governor
cpupower: fix potential memory leak
PM / devfreq: style/typo fixes
PM / devfreq: exynos: Add the detailed correlation for Exynos5422 bus
..
* pm-cpufreq: (63 commits)
intel_pstate: Clean up get_target_pstate_use_performance()
intel_pstate: Use sample.core_avg_perf in get_avg_pstate()
intel_pstate: Clarify average performance computation
intel_pstate: Avoid unnecessary synchronize_sched() during initialization
cpufreq: schedutil: Make default depend on CONFIG_SMP
cpufreq: powernv: del_timer_sync when global and local pstate are equal
cpufreq: powernv: Move smp_call_function_any() out of irq safe block
intel_pstate: Clean up intel_pstate_get()
cpufreq: schedutil: Make it depend on CONFIG_SMP
cpufreq: governor: Fix handling of special cases in dbs_update()
cpufreq: intel_pstate: Ignore _PPC processing under HWP
cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table
cpufreq: tango: Use generic platdev driver
cpufreq: Fix GOV_LIMITS handling for the userspace governor
cpufreq: mvebu: Move cpufreq code into drivers/cpufreq/
cpufreq: dt: Kill platform-data
mvebu: Use dev_pm_opp_set_sharing_cpus() to mark OPP tables as shared
cpufreq: dt: Identify cpu-sharing for platforms without operating-points-v2
cpufreq: governor: Change confusing struct field and variable names
cpufreq: intel_pstate: Enable PPC enforcement for servers
...
tsk_nr_cpus_allowed() is an accessor for task->nr_cpus_allowed which allows
us to change the representation of ->nr_cpus_allowed if required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1462969411-17735-2-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use the future-safe accessor for struct task_struct's.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1462969411-17735-1-git-send-email-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Systems show a minimal load average of 0.00, 0.01, 0.05 even when they
have no load at all.
Uptime and /proc/loadavg on all systems with kernels released during the
last five years up until kernel version 4.6-rc5, show a 5- and 15-minute
minimum loadavg of 0.01 and 0.05 respectively. This should be 0.00 on
idle systems, but the way the kernel calculates this value prevents it
from getting lower than the mentioned values.
Likewise but not as obviously noticeable, a fully loaded system with no
processes waiting, shows a maximum 1/5/15 loadavg of 1.00, 0.99, 0.95
(multiplied by number of cores).
Once the (old) load becomes 93 or higher, it mathematically can never
get lower than 93, even when the active (load) remains 0 forever.
This results in the strange 0.00, 0.01, 0.05 uptime values on idle
systems. Note: 93/2048 = 0.0454..., which rounds up to 0.05.
It is not correct to add a 0.5 rounding (=1024/2048) here, since the
result from this function is fed back into the next iteration again,
so the result of that +0.5 rounding value then gets multiplied by
(2048-2037), and then rounded again, so there is a virtual "ghost"
load created, next to the old and active load terms.
By changing the way the internally kept value is rounded, that internal
value equivalent now can reach 0.00 on idle, and 1.00 on full load. Upon
increasing load, the internally kept load value is rounded up, when the
load is decreasing, the load value is rounded down.
The modified code was tested on nohz=off and nohz kernels. It was tested
on vanilla kernel 4.6-rc5 and on centos 7.1 kernel 3.10.0-327. It was
tested on single, dual, and octal cores system. It was tested on virtual
hosts and bare hardware. No unwanted effects have been observed, and the
problems that the patch intended to fix were indeed gone.
Tested-by: Damien Wyart <damien.wyart@free.fr>
Signed-off-by: Vik Heyndrickx <vik.heyndrickx@veribox.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Doug Smythies <dsmythies@telus.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0f004f5a69 ("sched: Cure more NO_HZ load average woes")
Link: http://lkml.kernel.org/r/e8d32bff-d544-7748-72b5-3c86cc71f09f@veribox.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In calculate_imbalance() load_above_capacity currently has the unit
[capacity] while it is used as being [load/capacity]. Not only is it
wrong it also makes it unlikely that load_above_capacity is ever used
as the subsequent code picks the smaller of load_above_capacity and
the avg_load
This patch ensures that load_above_capacity has the right unit
[load/capacity].
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
[ Changed changelog to note it was in capacity unit; +rebase. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1461958364-675-4-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Wanpeng noted that the scale_load_down() in calculate_imbalance() was
weird. I agree, it should be SCHED_CAPACITY_SCALE, since we're going
to compare against busiest->group_capacity, which is in [capacity]
units.
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
9642d18eee ("nohz: Affine unpinned timers to housekeepers")'
intended to affine unpinned timers to housekeepers:
unpinned timers(full dynaticks, idle) => nearest busy housekeepers(otherwise, fallback to any housekeepers)
unpinned timers(full dynaticks, busy) => nearest busy housekeepers(otherwise, fallback to any housekeepers)
unpinned timers(houserkeepers, idle) => nearest busy housekeepers(otherwise, fallback to itself)
However, the !idle_cpu(i) && is_housekeeping_cpu(cpu) check modified the
intention to:
unpinned timers(full dynaticks, idle) => any housekeepers(no mattter cpu topology)
unpinned timers(full dynaticks, busy) => any housekeepers(no mattter cpu topology)
unpinned timers(housekeepers, idle) => any busy cpus(otherwise, fallback to any housekeepers)
This patch fixes it by checking if there are busy housekeepers nearby,
otherwise falls to any housekeepers/itself. After the patch:
unpinned timers(full dynaticks, idle) => nearest busy housekeepers(otherwise, fallback to any housekeepers)
unpinned timers(full dynaticks, busy) => nearest busy housekeepers(otherwise, fallback to any housekeepers)
unpinned timers(housekeepers, idle) => nearest busy housekeepers(otherwise, fallback to itself)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ Fixed the changelog. ]
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 'commit 9642d18eee ("nohz: Affine unpinned timers to housekeepers")'
Link: http://lkml.kernel.org/r/1462344334-8303-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pavan reported that in the presence of very light tasks (or cgroups)
the placement of migrated tasks can cause severe fairness issues.
The problem is that enqueue_entity() places the task before it updates
time, thereby it can place the task far in the past (remember that
light tasks will shoot virtual time forward at a high speed, so in
relation to the pre-existing light task, we can land far in the past).
This is done because update_curr() needs the current task, and we
might be placing the current task.
The obvious solution is to differentiate between the current and any
other task; placing the current before we update time, and placing any
other task after, such that !curr tasks end up at the current moment
in time, and not in the past.
This commit re-introduces the previously reverted commit:
3a47d5124a ("sched/fair: Fix fairness issue on migration")
... which is now safe to do, after we've also fixed another
underlying bug first, in:
sched/fair: Prepare to fix fairness problems on migration
and cleaned up other details in the migration code:
sched/core: Kill sched_class::task_waking
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With sched_class::task_waking being called only when we do
set_task_cpu(), we can make sched_class::migrate_task_rq() do the work
and eliminate sched_class::task_waking entirely.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that our recent attempt to fix migration problems:
3a47d5124a ("sched/fair: Fix fairness issue on migration")
broke interactivity and the signal starve test. We reverted that
commit and now let's try it again more carefully, with some other
underlying problems fixed first.
One problem is that I assumed ENQUEUE_WAKING was only set when we do a
cross-cpu wakeup (migration), which isn't true. This means we now
destroy the vruntime history of tasks and wakeup-preemption suffers.
Cure this by making my assumption true, only call
sched_class::task_waking() when we do a cross-cpu wakeup. This avoids
the indirect call in the case we do a local wakeup.
Reported-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Fixes: 3a47d5124a ("sched/fair: Fix fairness issue on migration")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since I want to make ->task_woken() conditional on the task getting
migrated, we cannot use it to call record_wakee().
Move it to select_task_rq_fair(), which gets called in almost all the
same conditions. The only exception is if the woken task (@p) is
CPU-bound (as per the nr_cpus_allowed test in select_task_rq()).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike reported that this recent commit:
3a47d5124a ("sched/fair: Fix fairness issue on migration")
... broke interactivity and the signal starvation test.
We have a proper fix series in the works but ran out of time for
v4.6, so revert the commit.
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We got this warning:
WARNING: CPU: 1 PID: 2468 at kernel/sched/core.c:1161 set_task_cpu+0x1af/0x1c0
[...]
Call Trace:
dump_stack+0x63/0x87
__warn+0xd1/0xf0
warn_slowpath_null+0x1d/0x20
set_task_cpu+0x1af/0x1c0
push_dl_task.part.34+0xea/0x180
push_dl_tasks+0x17/0x30
__balance_callback+0x45/0x5c
__sched_setscheduler+0x906/0xb90
SyS_sched_setattr+0x150/0x190
do_syscall_64+0x62/0x110
entry_SYSCALL64_slow_path+0x25/0x25
This corresponds to:
WARN_ON_ONCE(p->state == TASK_RUNNING &&
p->sched_class == &fair_sched_class &&
(p->on_rq && !task_on_rq_migrating(p)))
It happens because in find_lock_later_rq(), the task whose scheduling
class was changed to fair class is still pushed away as if it were
a deadline task ...
So, check in find_lock_later_rq() after double_lock_balance(), if the
scheduling class of the deadline task was changed, break and retry.
Apply the same logic to RT tasks.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/1462767091-1215-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
34e2c555f3 ("cpufreq: Add mechanism for registering utilization update callbacks")
overlooked the fact that update_load_avg(), where CFS invokes cpufreq
utilization update callbacks, becomes an empty stub on UP kernels.
In consequence, if !CONFIG_SMP, cpufreq governors are never invoked
from CFS and they do not have a chance to evaluate CPU performace
levels and update them often enough.
Needless to say, things don't work as expected then.
Fix the problem by making the !CONFIG_SMP stub of update_load_avg()
invoke cpufreq update callbacks too.
Reported-by: Steve Muckle <steve.muckle@linaro.org>
Tested-by: Steve Muckle <steve.muckle@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Steve Muckle <steve.muckle@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux PM list <linux-pm@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Fixes: 34e2c555f3 (cpufreq: Add mechanism for registering utilization update callbacks)
Link: http://lkml.kernel.org/r/6282396.VVEdgVYxO3@vostro.rjw.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
No need for an extra notifier. We don't need to handle all these states. It's
sufficient to kill the timer when the cpu dies.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.770528462@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The alleged requirement that the migration notifier has a lower priority than
perf is completely undocumented and there is no indication at all that this is
true. perf does not even handle the CPU_ONLINE notification and perf really
has nothing to do with migration.
Move the CPU_ONLINE code into the sched_activate_cpu() state callback.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.421743581@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It really does not matter when we fold the load for the outgoing cpu. It's
almost dead anyway, so there is no harm if we fail to fold the few
microseconds which are required for going fully away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.328739226@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We can piggy pack that on the SCHED_STARTING state. It's not required before
the cpu actually comes online. Name the function proper as it has nothing to
do with migration.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.248226511@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The sync_rcu stuff is specificically for clearing bits in the active
mask, such that everybody will observe the bit cleared and will not
consider the cleared CPU for load-balancing etc.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.169219710@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Now that we reduced everything into single notifiers, it's simple to move them
into the hotplug state machine space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is the last operation on the cpu before vanishing. No point in calling
that on CPU_DEAD.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We can maintain the ordering of the scheduler cpu hotplug functionality nicely
in one notifer. Get rid of the maze.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Prevent the SMP scheduler related notifiers to be executed before the smp
scheduler is initialized and install them early.
This is a preparatory change for further consolidation of the hotplug notifier
maze.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Start distangling the maze of hotplug notifiers in the scheduler.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In order to enable symmetric hotplug, we must mirror the online &&
!active state of cpu-down on the cpu-up side.
However, to retain sanity, limit this state to per-cpu kthreads.
Aside from the change to set_cpus_allowed_ptr(), which allow moving
the per-cpu kthreads on, the other critical piece is the cpu selection
for pinned tasks in select_task_rq(). This avoids dropping into
select_fallback_rq().
select_fallback_rq() cannot be allowed to select !active cpus because
its used to migrate user tasks away. And we do not want to move user
tasks onto cpus that are in transition.
Requested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160301152303.GV6356@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The comment in calculate_imbalance() was introduced in commit:
2dd73a4f09 ("[PATCH] sched: implement smpnice")
which described the logic as it was then, but a later commit:
b18855500f ("sched/balancing: Fix 'local->avg_load > sds->avg_load' case in calculate_imbalance()")
.. complicated this logic some more so that the comment does not match anymore.
Update the comment to match the code.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461958364-675-3-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 8e7fbcbc22 ("sched: Remove stale power aware scheduling remnants
and dysfunctional knobs") deleted the power aware scheduling support.
This patch gets rid of the remaining power aware scheduling related
comments in the code as well.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461958364-675-2-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If we're accessing rq_clock() (e.g. in sched_avg_update()) we should
update the rq clock before calling cpu_load_update(), otherwise any
time calculations will be stale.
All other paths currently call update_rq_clock().
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1462304814-11715-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The max_idle_balance_cost and avg_idle values which are tracked and ar used to
capture short idle incidents, are not associated with schedstats, however the
information of these two values isn't printed out on !CONFIG_SCHEDSTATS kernels.
Fix this by moving the value printout out of the CONFIG_SCHEDSTATS section.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1462250305-4523-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__compute_runnable_contrib() uses a loop to compute sum, whereas a
table lookup can do it faster in a constant amount of time.
The program to generate the constants is located at:
Documentation/scheduler/sched-avg.txt
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Morten Rasmussen <morten.rasmussen@arm.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@arm.com
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/1462226078-31904-2-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After cleaning up the sched metrics, there are two definitions that are
ambiguous and confusing: SCHED_LOAD_SHIFT and SCHED_LOAD_SHIFT.
Resolve this:
- Rename SCHED_LOAD_SHIFT to NICE_0_LOAD_SHIFT, which better reflects what
it is.
- Replace SCHED_LOAD_SCALE use with SCHED_CAPACITY_SCALE and remove SCHED_LOAD_SCALE.
Suggested-by: Ben Segall <bsegall@google.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: lizefan@huawei.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1459829551-21625-3-git-send-email-yuyang.du@intel.com
[ Rewrote the changelog and fixed the build on 32-bit kernels. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Integer metric needs fixed point arithmetic. In sched/fair, a few
metrics, e.g., weight, load, load_avg, util_avg, freq, and capacity,
may have different fixed point ranges, which makes their update and
usage error-prone.
In order to avoid the errors relating to the fixed point range, we
definie a basic fixed point range, and then formalize all metrics to
base on the basic range.
The basic range is 1024 or (1 << 10). Further, one can recursively
apply the basic range to have larger range.
Pointed out by Ben Segall, weight (visible to user, e.g., NICE-0 has
1024) and load (e.g., NICE_0_LOAD) have independent ranges, but they
must be well calibrated.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: lizefan@huawei.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1459829551-21625-2-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike ran into the low load resolution limitation on his big machine.
So reenable these bits; nobody could ever reproduce/analyze the
reported power usage claim and Google has been running with this for
years as well.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The problem with the existing lock pinning is that each pin is of
value 1; this mean you can simply unpin if you know its pinned,
without having any extra information.
This scheme generates a random (16 bit) cookie for each pin and
requires this same cookie to unpin. This means you have to keep the
cookie in context.
No objsize difference for !LOCKDEP kernels.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to be able to pass around more than just the IRQ flags in the
future, add a rq_flags structure.
No difference in code generation for the x86_64-defconfig build I
tested.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
By default, this is the same thing as switch_mm().
x86 will override it as an optimization.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/df401df47bdd6be3e389c6f1e3f5310d70e81b2c.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes delta_exec is 0 due to update_curr() is called multiple times,
this is captured by:
u64 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
This patch optimizes the cpufreq update kicker by bailing out when nothing
changed, it will benefit the upcoming schedutil, since otherwise it will
(over)react to the special util/max combination.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461316044-9520-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Chris Metcalf reported a that sched_can_stop_tick() sometimes fails to
re-enable the tick.
His observed problem is that rq->cfs.nr_running can be 1 even though
there are multiple runnable CFS tasks. This happens in the cgroup
case, in which case cfs.nr_running is the number of runnable entities
for that level.
If there is a single runnable cgroup (which can have an arbitrary
number of runnable child entries itself) rq->cfs.nr_running will be 1.
However, looking at that function I think there's more problems with it.
It seems to assume that if there's FIFO tasks, those will run. This is
incorrect. The FIFO task can have a lower prio than an RR task, in which
case the RR task will run.
So the whole fifo_nr_running test seems misplaced, it should go after
the rr_nr_running tests. That is, only if !rr_nr_running, can we use
fifo_nr_running like this.
Reported-by: Chris Metcalf <cmetcalf@mellanox.com>
Tested-by: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Wanpeng Li <kernellwp@gmail.com>
Fixes: 76d92ac305 ("sched: Migrate sched to use new tick dependency mask model")
Link: http://lkml.kernel.org/r/20160421160315.GK24771@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I got a minus(very big) dl_b->total_bw during my deadline tests.
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -222297900
Something unusual must have happened.
After some digging, I finally noticed that when changing a deadline
task to normal(cfs), and changing it back to deadline immediately,
after it died, we will got the wrong dl_bw->total_bw.
The root cause is in dl_overflow(), it has:
if (new_bw == p->dl.dl_bw)
return 0;
1) When a deadline task is changed to !deadline task, it will start
dl timer in switched_from_dl(), and retain previous deadline parameter
till the timer expires.
2) If we change it back to deadline with the same bandwidth parameter
before the timer expires, as it keeps the old bandwidth although it
is not a deadline task. dl_overflow() simply returns success without
updating the right data, and got the wrong dl_bw->total_bw.
The solution is simple, if @p is not deadline, don't return.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460636368-1993-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some code in CPU load update only concern NO_HZ configs but it is
built on all configurations. When NO_HZ isn't built, that code is harmless
but just happens to take some useless ressources in CPU and memory:
1) one useless field in struct rq
2) jiffies record on every tick that is never used (cpu_load_update_periodic)
3) decay_load_missed is called two times on every tick to eventually
return immediately with no action taken. And that function is dead
code.
For pure optimization purposes, lets conditionally build the NO_HZ
related code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ticks can happen while the CPU is in dynticks-idle or dynticks-singletask
mode. In fact "nohz" or "dynticks" only mean that we exit the periodic
mode and we try to minimize the ticks as much as possible. The nohz
subsystem uses a confusing terminology with the internal state
"ts->tick_stopped" which is also available through its public interface
with tick_nohz_tick_stopped(). This is a misnomer as the tick is instead
reduced with the best effort rather than stopped. In the best case the
tick can indeed be actually stopped but there is no guarantee about that.
If a timer needs to fire one second later, a tick will fire while the
CPU is in nohz mode and this is a very common scenario.
Now this confusion happens to be a problem with CPU load updates:
cpu_load_update_active() doesn't handle nohz ticks correctly because it
assumes that ticks are completely stopped in nohz mode and that
cpu_load_update_active() can't be called in dynticks mode. When that
happens, the whole previous tickless load is ignored and the function
just records the load for the current tick, ignoring potentially long
idle periods behind.
In order to solve this, we could account the current load for the
previous nohz time but there is a risk that we account the load of a
task that got freshly enqueued for the whole nohz period.
So instead, lets record the dynticks load on nohz frame entry so we know
what to record in case of nohz ticks, then use this record to account
the tickless load on nohz ticks and nohz frame end.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.
Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:
update_cpu_load_*() -> cpu_load_update_*()
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpufreq hook should be called any time the root CFS rq utilization
changes. This can occur when a task is switched to or from the fair
class, or a task moves between groups or CPUs, but these paths
currently do not call the cpufreq hook.
Fix this by adding the hook to attach_entity_load_avg() and
detach_entity_load_avg().
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
[ Added the .update_freq argument to update_cfs_rq_load_avg() to avoid a double cpufreq call. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458858367-2831-1-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's no reason to call the cpufreq hook if the root cfs_rq
utilization has not been modified.
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/1458606068-7476-2-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cpufreq hook should be called whenever the root cfs_rq
utilization changes so update_cfs_rq_load_avg() is a better
place for it. The current location is not invoked in the
enqueue_entity() or update_blocked_averages() paths.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Steve Muckle <smuckle@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458606068-7476-1-git-send-email-smuckle@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When asymmetric packing is set in the sched_domain and target CPU is
busy, update_sd_pick_busiest() may not select the busiest runqueue.
When target CPU is busy, find_busiest_group() will ignore checks for
asym packing and may continue to load balance using the currently
selected not-the-busiest runqueue as source runqueue.
Selecting the busiest runqueue as source when the target CPU is busy,
should result in achieving much better load balance.
Also when target CPU is not busy and asymmetric packing is set in sd,
select higher CPU as source CPU for load balancing.
While doing this change, move the check to see if target CPU is busy
into check_asym_packing().
The extent of performance benefit from this change decreases with the
increasing load. However there is benefit in undercommit as well as
overcommit conditions.
1. Record per second ebizzy (32 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 5223767.00 10368236.00 7946971.00 1753094.76
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 8617191.00 13872356.00 11383980.00 1783400.89 +24.78%
2. Record per second ebizzy (64 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 6497666.00 18399783.00 10818093.20 4051452.08
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 7567365.00 19456937.00 11674063.60 4295407.48 +4.40%
3. Record per second ebizzy (128 threads) on a 64 CPU power 7 box. (5 iterations)
4.6.0-rc2
Testcase: Min Max Avg StdDev
ebizzy: 37073983.00 40341911.00 38776241.80 1259766.82
4.6.0-rc2+asym-changes
Testcase: Min Max Avg StdDev %Change
ebizzy: 38030399.00 41333378.00 39827404.40 1255001.86 +2.54%
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Gautham R Shenoy <ego@linux.vnet.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1459948660-16073-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
task_pt_regs() can return NULL for kernel threads, so add a check.
This fixes an oops at boot on ppc64.
Reported-and-Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: htejun@gmail.com
Cc: linuxppc-dev@lists.ozlabs.org
Cc: tj@kernel.org
Cc: yangds.fnst@cn.fujitsu.com
Link: http://lkml.kernel.org/r/20160406215950.04bc3f0b@kryten
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The local_clock/cpu_clock functions were changed to prevent a double
identical test with sched_clock_cpu() when HAVE_UNSTABLE_SCHED_CLOCK
is set. That resulted in one line functions.
As these functions are in all the cases one line functions and in the
hot path, it is useful to specify them as static inline in order to
give a strong hint to the compiler.
After verification, it appears the compiler does not inline them
without this hint. Change those functions to static inline.
sched_clock_cpu() is called via the inlined local_clock()/cpu_clock()
functions from sched.h. So any module code including sched.h will
reference sched_clock_cpu(). Thus it must be exported with the
EXPORT_SYMBOL_GPL macro.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460385514-14700-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In case the HAVE_UNSTABLE_SCHED_CLOCK config is set, the cpu_clock() version
checks if sched_clock_stable() is not set and calls sched_clock_cpu(),
otherwise it calls sched_clock().
sched_clock_cpu() checks also if sched_clock_stable() is set and, if true,
calls sched_clock().
sched_clock() will be called in sched_clock_cpu() if sched_clock_stable() is
true.
Remove the duplicate test by directly calling sched_clock_cpu() and let the
static key act in this function instead.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460385514-14700-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sysrq_sched_debug_show() can dump a lot of information. Don't print out
all that if we're just trying to get a list of blocked tasks (SysRq-W).
The information is still accessible with SysRq-T.
Signed-off-by: Rabin Vincent <rabinv@axis.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459777322-30902-1-git-send-email-rabin.vincent@axis.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to differences in the cpufreq core's handling of runtime CPU
offline and nonboot CPUs disabling during system suspend-to-RAM,
fast frequency switching gets disabled after a suspend-to-RAM and
resume cycle on all of the nonboot CPUs.
To prevent that from happening, move the invocation of
cpufreq_disable_fast_switch() from cpufreq_exit_governor() to
sugov_exit(), as the schedutil governor is the only user of fast
frequency switching today anyway.
That simply prevents cpufreq_disable_fast_switch() from being called
without invoking the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT
event (which happens during system suspend now).
Fixes: b7898fda5b (cpufreq: Support for fast frequency switching)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Add a new cpufreq scaling governor, called "schedutil", that uses
scheduler-provided CPU utilization information as input for making
its decisions.
Doing that is possible after commit 34e2c555f3 (cpufreq: Add
mechanism for registering utilization update callbacks) that
introduced cpufreq_update_util() called by the scheduler on
utilization changes (from CFS) and RT/DL task status updates.
In particular, CPU frequency scaling decisions may be based on
the the utilization data passed to cpufreq_update_util() by CFS.
The new governor is relatively simple.
The frequency selection formula used by it depends on whether or not
the utilization is frequency-invariant. In the frequency-invariant
case the new CPU frequency is given by
next_freq = 1.25 * max_freq * util / max
where util and max are the last two arguments of cpufreq_update_util().
In turn, if util is not frequency-invariant, the maximum frequency in
the above formula is replaced with the current frequency of the CPU:
next_freq = 1.25 * curr_freq * util / max
The coefficient 1.25 corresponds to the frequency tipping point at
(util / max) = 0.8.
All of the computations are carried out in the utilization update
handlers provided by the new governor. One of those handlers is
used for cpufreq policies shared between multiple CPUs and the other
one is for policies with one CPU only (and therefore it doesn't need
to use any extra synchronization means).
The governor supports fast frequency switching if that is supported
by the cpufreq driver in use and possible for the given policy.
In the fast switching case, all operations of the governor take
place in its utilization update handlers. If fast switching cannot
be used, the frequency switch operations are carried out with the
help of a work item which only calls __cpufreq_driver_target()
(under a mutex) to trigger a frequency update (to a value already
computed beforehand in one of the utilization update handlers).
Currently, the governor treats all of the RT and DL tasks as
"unknown utilization" and sets the frequency to the allowed
maximum when updated from the RT or DL sched classes. That
heavy-handed approach should be replaced with something more
subtle and specifically targeted at RT and DL tasks.
The governor shares some tunables management code with the
"ondemand" and "conservative" governors and uses some common
definitions from cpufreq_governor.h, but apart from that it
is stand-alone.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Replace the single helper for adding and removing cpufreq utilization
update hooks, cpufreq_set_update_util_data(), with a pair of helpers,
cpufreq_add_update_util_hook() and cpufreq_remove_update_util_hook(),
and modify the users of cpufreq_set_update_util_data() accordingly.
With the new helpers, the code using them doesn't need to worry
about the internals of struct update_util_data and in particular
it doesn't need to worry about populating the func field in it
properly upfront.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
A new task's util_avg is set to full utilization of a CPU (100% time
running). This accelerates a new task's utilization ramp-up, useful to
boost its execution in early time. However, it may result in
(insanely) high utilization for a transient time period when a flood
of tasks are spawned. Importantly, it violates the "fundamentally
bounded" CPU utilization, and its side effect is negative if we don't
take any measure to bound it.
This patch proposes an algorithm to address this issue. It has
two methods to approach a sensible initial util_avg:
(1) An expected (or average) util_avg based on its cfs_rq's util_avg:
util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
(2) A trajectory of how successive new tasks' util develops, which
gives 1/2 of the left utilization budget to a new task such that
the additional util is noticeably large (when overall util is low) or
unnoticeably small (when overall util is high enough). In the meantime,
the aggregate utilization is well bounded:
util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
where n denotes the nth task.
If util_avg is larger than util_avg_cap, then the effective util is
clamped to the util_avg_cap.
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
ed82b8a1ff ("sched/core: Move the sched_to_prio[] arrays out of line")
renamed prio_to_weight to sched_prio_to_weight, but the old name was not
updated in comments.
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459292871-22531-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While testing the tracer preemptoff, I hit this strange trace:
<...>-259 0...1 0us : schedule <-worker_thread
<...>-259 0d..1 0us : rcu_note_context_switch <-__schedule
<...>-259 0d..1 0us : rcu_sched_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
<...>-259 0d..1 0us : _raw_spin_lock <-__schedule
<...>-259 0d..1 0us : preempt_count_add <-_raw_spin_lock
<...>-259 0d..2 0us : do_raw_spin_lock <-_raw_spin_lock
<...>-259 0d..2 1us : deactivate_task <-__schedule
<...>-259 0d..2 1us : update_rq_clock.part.84 <-deactivate_task
<...>-259 0d..2 1us : dequeue_task_fair <-deactivate_task
<...>-259 0d..2 1us : dequeue_entity <-dequeue_task_fair
<...>-259 0d..2 1us : update_curr <-dequeue_entity
<...>-259 0d..2 1us : update_min_vruntime <-update_curr
<...>-259 0d..2 1us : cpuacct_charge <-update_curr
<...>-259 0d..2 1us : __rcu_read_lock <-cpuacct_charge
<...>-259 0d..2 1us : __rcu_read_unlock <-cpuacct_charge
<...>-259 0d..2 1us : clear_buddies <-dequeue_entity
<...>-259 0d..2 1us : account_entity_dequeue <-dequeue_entity
<...>-259 0d..2 2us : update_min_vruntime <-dequeue_entity
<...>-259 0d..2 2us : update_cfs_shares <-dequeue_entity
<...>-259 0d..2 2us : hrtick_update <-dequeue_task_fair
<...>-259 0d..2 2us : wq_worker_sleeping <-__schedule
<...>-259 0d..2 2us : kthread_data <-wq_worker_sleeping
<...>-259 0d..2 2us : pick_next_task_fair <-__schedule
<...>-259 0d..2 2us : check_cfs_rq_runtime <-pick_next_task_fair
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : pick_next_entity <-pick_next_task_fair
<...>-259 0d..2 2us : clear_buddies <-pick_next_entity
<...>-259 0d..2 2us : set_next_entity <-pick_next_task_fair
<...>-259 0d..2 3us : put_prev_entity <-pick_next_task_fair
<...>-259 0d..2 3us : check_cfs_rq_runtime <-put_prev_entity
<...>-259 0d..2 3us : set_next_entity <-pick_next_task_fair
gnome-sh-1031 0d..2 3us : finish_task_switch <-__schedule
gnome-sh-1031 0d..2 3us : _raw_spin_unlock_irq <-finish_task_switch
gnome-sh-1031 0d..2 3us : do_raw_spin_unlock <-_raw_spin_unlock_irq
gnome-sh-1031 0...2 3us!: preempt_count_sub <-_raw_spin_unlock_irq
gnome-sh-1031 0...1 582us : do_raw_spin_lock <-_raw_spin_lock
gnome-sh-1031 0...1 583us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 583us : do_raw_spin_unlock <-_raw_spin_unlock
gnome-sh-1031 0...1 583us : preempt_count_sub <-_raw_spin_unlock
gnome-sh-1031 0...1 584us : _raw_spin_unlock <-drm_gem_object_lookup
gnome-sh-1031 0...1 584us+: trace_preempt_on <-drm_gem_object_lookup
gnome-sh-1031 0...1 603us : <stack trace>
=> preempt_count_sub
=> _raw_spin_unlock
=> drm_gem_object_lookup
=> i915_gem_madvise_ioctl
=> drm_ioctl
=> do_vfs_ioctl
=> SyS_ioctl
=> entry_SYSCALL_64_fastpath
As I'm tracing preemption disabled, it seemed incorrect that the trace
would go across a schedule and report not being in the scheduler.
Looking into this I discovered the problem.
schedule() calls preempt_disable() but the preempt_schedule() calls
preempt_enable_notrace(). What happened above was that the gnome-shell
task was preempted on another CPU, migrated over to the idle cpu. The
tracer stared with idle calling schedule(), which called
preempt_disable(), but then gnome-shell finished, and it enabled
preemption with preempt_enable_notrace() that does stop the trace, even
though preemption was enabled.
The purpose of the preempt_disable_notrace() in the preempt_schedule()
is to prevent function tracing from going into an infinite loop.
Because function tracing can trace the preempt_enable/disable() calls
that are traced. The problem with function tracing is:
NEED_RESCHED set
preempt_schedule()
preempt_disable()
preempt_count_inc()
function trace (before incrementing preempt count)
preempt_disable_notrace()
preempt_enable_notrace()
sees NEED_RESCHED set
preempt_schedule() (repeat)
Now by breaking out the preempt off/on tracing into their own code:
preempt_disable_check() and preempt_enable_check(), we can add these to
the preempt_schedule() code. As preemption would then be disabled, even
if they were to be traced by the function tracer, the disabled
preemption would prevent the recursion.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160321112339.6dc78ad6@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In account_entity_enqueue(), we do not do account_numa_enqueue()
as NUMA balancing is not needed for UP kernels.
Hence, we should remove the account_numa_dequeue() call from
account_entity_dequeue() for UP kernels.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454366879.21738.29.camel@schen9-desk2.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To force a task migration during active balancing, nr_balance_failed is set
to cache_nice_tries + 1. However nr_balance_failed is not reset. As a side
effect, the next regular load balance under the same sd, a cache hot task
might be migrated, just because nr_balance_failed count is high.
Resetting nr_balance_failed after a successful active balance ensures
that a hot task is not unreasonably migrated. This can be verified by
looking at othe number of hot task migrations reported by /proc/schedstat.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458735884-30105-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sometimes, cpuacct.usage is not detailed enough to see how much CPU
usage a group had. We want to know how much time it used in user mode
and how much in kernel mode.
This patch introduces more files to give this information:
# ls /sys/fs/cgroup/cpuacct/cpuacct.usage*
/sys/fs/cgroup/cpuacct/cpuacct.usage
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu
/sys/fs/cgroup/cpuacct/cpuacct.usage_user
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu_user
/sys/fs/cgroup/cpuacct/cpuacct.usage_sys
/sys/fs/cgroup/cpuacct/cpuacct.usage_percpu_sys
... while keeping the ABI with the existing counter.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
[ Ported to newer kernels. ]
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/aa171da036b520b51c79549e9b3215d29473f19d.1458635566.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code show stats of online CPUs in cpuacct.statcpus,
show stats of present cpus in cpuacct.usage(_percpu), and using
present CPUs for setting cpuacct.usage.
It will cause inconsistent result when a CPU is online or offline
or hotpluged.
We should always use possible CPUs to avoid above problem.
Here are the contents of a cpuacct.usage_percpu sysfs file,
on a 4 CPU system with maxcpus=32:
Before the patch:
# cat cpuacct.usage_percpu
2456565 411435 1052897 832584
After the patch:
# cat cpuacct.usage_percpu
2456565 411435 1052897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a11d56cef12d0b4807f8be3a46bf9798c3014d59.1458635566.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch functionally reverts:
5fd7a09cfb ("atomic: Export fetch_or()")
During the merge Linus observed that the generic version of fetch_or()
was messy:
" This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it. "
e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Now that we have introduced atomic_fetch_or(), fetch_or() is only used
by the scheduler in order to deal with thread_info flags which type
can vary across architectures.
Lets confine fetch_or() back to the scheduler so that we encourage
future users to use the more robust and well typed atomic_t version
instead.
While at it, fetch_or() gets robustified, pasting improvements from a
previous patch by Ingo Molnar that avoids needless expression
re-evaluations in the loop.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1458830281-4255-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Ingo Molnar:
"Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a
cputime fix and two cpuacct cleanups"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/cpuacct: Simplify the cpuacct code
sched/cpuacct: Rename parameter in cpuusage_write() for readability
sched/fair: Add comments to explain select_idle_sibling()
sched/fair: Fix fairness issue on migration
sched/cgroup: Fix/cleanup cgroup teardown/init
sched/cputime: Fix steal time accounting vs. CPU hotplug
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Use for() instead of while() loop in some functions
to make the code simpler.
- Use this_cpu_ptr() instead of per_cpu_ptr() to make the code
cleaner and a bit faster.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/d8a7ef9592f55224630cb26dea239f05b6398a4e.1458187654.git.zhaolei@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The name of the 'reset' parameter to cpuusage_write() is quite confusing,
because the only valid value we allow is '0', so !reset is actually the
case that resets ...
Rename it to 'val' and explain it in a comment that we only allow 0.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cgroups@vger.kernel.org
Cc: tj@kernel.org
Link: http://lkml.kernel.org/r/1450696483-2864-1-git-send-email-yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's not entirely obvious how the main loop in select_idle_sibling()
works on first glance. Sprinkle a few comments to explain the design
and intention behind the loop based on some conversations with Mike
and Peter.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.com>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457535548-15329-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pavan reported that in the presence of very light tasks (or cgroups)
the placement of migrated tasks can cause severe fairness issues.
The problem is that enqueue_entity() places the task before it updates
time, thereby it can place the task far in the past (remember that
light tasks will shoot virtual time forward at a high speed, so in
relation to the pre-existing light task, we can land far in the past).
This is done because update_curr() needs the current task, and we
might be placing the current task.
The obvious solution is to differentiate between the current and any
other task; placing the current before we update time, and placing any
other task after, such that !curr tasks end up at the current moment
in time, and not in the past.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Tested-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Link: http://lkml.kernel.org/r/20160309120403.GK6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CPU controller hasn't kept up with the various changes in the whole
cgroup initialization / destruction sequence, and commit:
2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
caused it to explode.
The reason for this is that zombies do not inhibit css_offline() from
being called, but do stall css_released(). Now we tear down the cfs_rq
structures on css_offline() but zombies can run after that, leading to
use-after-free issues.
The solution is to move the tear-down to css_released(), which
guarantees nobody (including no zombies) is still using our cgroup.
Furthermore, a few simple cleanups are possible too. There doesn't
appear to be any point to us using css_online() (anymore?) so fold that
in css_alloc().
And since cgroup code guarantees an RCU grace period between
css_released() and css_free() we can forgo using call_rcu() and free the
stuff immediately.
Suggested-by: Tejun Heo <tj@kernel.org>
Reported-by: Kazuki Yamaguchi <k@rhe.jp>
Reported-by: Niklas Cassel <niklas.cassel@axis.com>
Tested-by: Niklas Cassel <niklas.cassel@axis.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Link: http://lkml.kernel.org/r/20160316152245.GY6344@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull 'objtool' stack frame validation from Ingo Molnar:
"This tree adds a new kernel build-time object file validation feature
(ONFIG_STACK_VALIDATION=y): kernel stack frame correctness validation.
It was written by and is maintained by Josh Poimboeuf.
The motivation: there's a category of hard to find kernel bugs, most
of them in assembly code (but also occasionally in C code), that
degrades the quality of kernel stack dumps/backtraces. These bugs are
hard to detect at the source code level. Such bugs result in
incorrect/incomplete backtraces most of time - but can also in some
rare cases result in crashes or other undefined behavior.
The build time correctness checking is done via the new 'objtool'
user-space utility that was written for this purpose and which is
hosted in the kernel repository in tools/objtool/. The tool's (very
simple) UI and source code design is shaped after Git and perf and
shares quite a bit of infrastructure with tools/perf (which tooling
infrastructure sharing effort got merged via perf and is already
upstream). Objtool follows the well-known kernel coding style.
Objtool does not try to check .c or .S files, it instead analyzes the
resulting .o generated machine code from first principles: it decodes
the instruction stream and interprets it. (Right now objtool supports
the x86-64 architecture.)
From tools/objtool/Documentation/stack-validation.txt:
"The kernel CONFIG_STACK_VALIDATION option enables a host tool named
objtool which runs at compile time. It has a "check" subcommand
which analyzes every .o file and ensures the validity of its stack
metadata. It enforces a set of rules on asm code and C inline
assembly code so that stack traces can be reliable.
Currently it only checks frame pointer usage, but there are plans to
add CFI validation for C files and CFI generation for asm files.
For each function, it recursively follows all possible code paths
and validates the correct frame pointer state at each instruction.
It also follows code paths involving special sections, like
.altinstructions, __jump_table, and __ex_table, which can add
alternative execution paths to a given instruction (or set of
instructions). Similarly, it knows how to follow switch statements,
for which gcc sometimes uses jump tables."
When this new kernel option is enabled (it's disabled by default), the
tool, if it finds any suspicious assembly code pattern, outputs
warnings in compiler warning format:
warning: objtool: rtlwifi_rate_mapping()+0x2e7: frame pointer state mismatch
warning: objtool: cik_tiling_mode_table_init()+0x6ce: call without frame pointer save/setup
warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
... so that scripts that pick up compiler warnings will notice them.
All known warnings triggered by the tool are fixed by the tree, most
of the commits in fact prepare the kernel to be warning-free. Most of
them are bugfixes or cleanups that stand on their own, but there are
also some annotations of 'special' stack frames for justified cases
such entries to JIT-ed code (BPF) or really special boot time code.
There are two other long-term motivations behind this tool as well:
- To improve the quality and reliability of kernel stack frames, so
that they can be used for optimized live patching.
- To create independent infrastructure to check the correctness of
CFI stack frames at build time. CFI debuginfo is notoriously
unreliable and we cannot use it in the kernel as-is without extra
checking done both on the kernel side and on the build side.
The quality of kernel stack frames matters to debuggability as well,
so IMO we can merge this without having to consider the live patching
or CFI debuginfo angle"
* 'core-objtool-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
objtool: Only print one warning per function
objtool: Add several performance improvements
tools: Copy hashtable.h into tools directory
objtool: Fix false positive warnings for functions with multiple switch statements
objtool: Rename some variables and functions
objtool: Remove superflous INIT_LIST_HEAD
objtool: Add helper macros for traversing instructions
objtool: Fix false positive warnings related to sibling calls
objtool: Compile with debugging symbols
objtool: Detect infinite recursion
objtool: Prevent infinite recursion in noreturn detection
objtool: Detect and warn if libelf is missing and don't break the build
tools: Support relative directory path for 'O='
objtool: Support CROSS_COMPILE
x86/asm/decoder: Use explicitly signed chars
objtool: Enable stack metadata validation on 64-bit x86
objtool: Add CONFIG_STACK_VALIDATION option
objtool: Add tool to perform compile-time stack metadata validation
x86/kprobes: Mark kretprobe_trampoline() stack frame as non-standard
sched: Always inline context_switch()
...
Pull cgroup updates from Tejun Heo:
"cgroup changes for v4.6-rc1. No userland visible behavior changes in
this pull request. I'll send out a separate pull request for the
addition of cgroup namespace support.
- The biggest change is the revamping of cgroup core task migration
and controller handling logic. There are quite a few places where
controllers and tasks are manipulated. Previously, many of those
places implemented custom operations for each specific use case
assuming specific starting conditions. While this worked, it makes
the code fragile and difficult to follow.
The bulk of this pull request restructures these operations so that
most related operations are performed through common helpers which
implement recursive (subtrees are always processed consistently)
and idempotent (they make cgroup hierarchy converge to the target
state rather than performing operations assuming specific starting
conditions). This makes the code a lot easier to understand,
verify and extend.
- Implicit controller support is added. This is primarily for using
perf_event on the v2 hierarchy so that perf can match cgroup v2
path without requiring the user to do anything special. The kernel
portion of perf_event changes is acked but userland changes are
still pending review.
- cgroup_no_v1= boot parameter added to ease testing cgroup v2 in
certain environments.
- There is a regression introduced during v4.4 devel cycle where
attempts to migrate zombie tasks can mess up internal object
management. This was fixed earlier this week and included in this
pull request w/ stable cc'd.
- Misc non-critical fixes and improvements"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (44 commits)
cgroup: avoid false positive gcc-6 warning
cgroup: ignore css_sets associated with dead cgroups during migration
Documentation: cgroup v2: Trivial heading correction.
cgroup: implement cgroup_subsys->implicit_on_dfl
cgroup: use css_set->mg_dst_cgrp for the migration target cgroup
cgroup: make cgroup[_taskset]_migrate() take cgroup_root instead of cgroup
cgroup: move migration destination verification out of cgroup_migrate_prepare_dst()
cgroup: fix incorrect destination cgroup in cgroup_update_dfl_csses()
cgroup: Trivial correction to reflect controller.
cgroup: remove stale item in cgroup-v1 document INDEX file.
cgroup: update css iteration in cgroup_update_dfl_csses()
cgroup: allocate 2x cgrp_cset_links when setting up a new root
cgroup: make cgroup_calc_subtree_ss_mask() take @this_ss_mask
cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends
cgroup: use cgroup_apply_enable_control() in cgroup creation path
cgroup: combine cgroup_mutex locking and offline css draining
cgroup: factor out cgroup_{apply|finalize}_control() from cgroup_subtree_control_write()
cgroup: introduce cgroup_{save|propagate|restore}_control()
cgroup: make cgroup_drain_offline() and cgroup_apply_control_{disable|enable}() recursive
cgroup: factor out cgroup_apply_control_enable() from cgroup_subtree_control_write()
...
Pull workqueue updates from Tejun Heo:
"Three trivial workqueue changes"
* 'for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Fix comment for work_on_cpu()
sched/core: Get rid of 'cpu' argument in wq_worker_sleeping()
workqueue: Replace usage of init_name with dev_set_name()
- Redesign of cpufreq governors and the intel_pstate driver to
make them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers
for that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it
more straightforward and fix some concurrency problems in it
(Rafael Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve
its handling of voltage regulators and device clocks and updates
of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization
and cleanup problems in it and correct its worker thread handling
with respect to CPU offline, new powernv_throttle tracepoint
(Shilpasri Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced
by previos changes in the ACPICA code (Bob Moore, Lv Zheng,
David Box, Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers)
and ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as
a valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls made,
fixes related to Xeon x200 processors, compiler warning fixes) and
cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJW50NXAAoJEILEb/54YlRxvr8QAIktC9+ft0y5AmU46hDcBWcK
QutyWJL9X9BS6DWBJZA2qclDYFmhMfi5Fza1se0gQ9TnLB/KrBwHWLsiYoTsb1k+
nPKf214aPk+qAhkVuyB4leNWML9Qz9n9jwku/EYxWWpgtbSRf3+0ioIKZeWWc/8V
JvuaOu4O+g/tkmL7QTrnGWBwhIIssAAV85QPsHkx+g68MrCj4UMMzm7z9G21SPXX
bmP8yIHsczX/XnRsY0W2NSno7Vdk6ImHpDJ26IAZg28WRNPWICHgGYHvB0TTWMvb
tts+yqfF7/7QLRjT/M8k9CzDBDE/DnVqoZ0fNJ+aYr7hNKF32mtAN+jH9ZB9dl/P
fEFapJkPxnWyzAoVoB9Dz0rkcZkYMlbxlLWzUGpaPq0JflUUTzLk0ApSjmMn4HRO
UddwCDdyHTaYThp3gn6GbOb0pIP0SdOVbI1M2QV2x/4PLcT2Ft8Np1+1RFWOeinZ
Bdl9AE890big0808mqbBzw/buETwr9FjHtCdDPXpP0vJpkBLu3nIYRNb0LCt39es
mWMp6dFhGgvGj3D3ahTuV3GI8hdpDkh9SObexa11RCjkTKrXcwEmFxHxLeFXwKYq
alG278bo6cSChRMziS1lis+W/3tsJRN4TXUSv1PPzJHrFgptQVFRStU9ngBKP+pN
WB+itPc4Fw0YHOrAFsrx
=cfty
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"This time the majority of changes go into cpufreq and they are
significant.
First off, the way CPU frequency updates are triggered is different
now. Instead of having to set up and manage a deferrable timer for
each CPU in the system to evaluate and possibly change its frequency
periodically, cpufreq governors set up callbacks to be invoked by the
scheduler on a regular basis (basically on utilization updates). The
"old" governors, "ondemand" and "conservative", still do all of their
work in process context (although that is triggered by the scheduler
now), but intel_pstate does it all in the callback invoked by the
scheduler with no need for any additional asynchronous processing.
Of course, this eliminates the overhead related to the management of
all those timers, but also it allows the cpufreq governor code to be
simplified quite a bit. On top of that, the common code and data
structures used by the "ondemand" and "conservative" governors are
cleaned up and made more straightforward and some long-standing and
quite annoying problems are addressed. In particular, the handling of
governor sysfs attributes is modified and the related locking becomes
more fine grained which allows some concurrency problems to be avoided
(particularly deadlocks with the core cpufreq code).
In principle, the new mechanism for triggering frequency updates
allows utilization information to be passed from the scheduler to
cpufreq. Although the current code doesn't make use of it, in the
works is a new cpufreq governor that will make decisions based on the
scheduler's utilization data. That should allow the scheduler and
cpufreq to work more closely together in the long run.
In addition to the core and governor changes, cpufreq drivers are
updated too. Fixes and optimizations go into intel_pstate, the
cpufreq-dt driver is updated on top of some modification in the
Operating Performance Points (OPP) framework and there are fixes and
other updates in the powernv cpufreq driver.
Apart from the cpufreq updates there is some new ACPICA material,
including a fix for a problem introduced by previous ACPICA updates,
and some less significant changes in the ACPI code, like CPPC code
optimizations, ACPI processor driver cleanups and support for loading
ACPI tables from initrd.
Also updated are the generic power domains framework, the Intel RAPL
power capping driver and the turbostat utility and we have a bunch of
traditional assorted fixes and cleanups.
Specifics:
- Redesign of cpufreq governors and the intel_pstate driver to make
them use callbacks invoked by the scheduler to trigger CPU
frequency evaluation instead of using per-CPU deferrable timers for
that purpose (Rafael Wysocki).
- Reorganization and cleanup of cpufreq governor code to make it more
straightforward and fix some concurrency problems in it (Rafael
Wysocki, Viresh Kumar).
- Cleanup and improvements of locking in the cpufreq core (Viresh
Kumar).
- Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
Kumar, Eric Biggers).
- intel_pstate driver updates including fixes, optimizations and a
modification to make it enable enable hardware-coordinated P-state
selection (HWP) by default if supported by the processor (Philippe
Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
Franciosi).
- Operating Performance Points (OPP) framework updates to improve its
handling of voltage regulators and device clocks and updates of the
cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
- Updates of the powernv cpufreq driver to fix initialization and
cleanup problems in it and correct its worker thread handling with
respect to CPU offline, new powernv_throttle tracepoint (Shilpasri
Bhat).
- ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
- ACPICA updates including one fix for a regression introduced by
previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box,
Colin Ian King).
- Support for installing ACPI tables from initrd (Lv Zheng).
- Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
Chaugule).
- Support for _HID(ACPI0010) devices (ACPI processor containers) and
ACPI processor driver cleanups (Sudeep Holla).
- Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
Aleksey Makarov).
- Modification of the ACPI PCI IRQ management code to make it treat
255 in the Interrupt Line register as "not connected" on x86 (as
per the specification) and avoid attempts to use that value as a
valid interrupt vector (Chen Fan).
- ACPI APEI fixes related to resource leaks (Josh Hunt).
- Removal of modularity from a few ACPI drivers (BGRT, GHES,
intel_pmic_crc) that cannot be built as modules in practice (Paul
Gortmaker).
- PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
as a valid resource type (Harb Abdulhamid).
- New device ID (future AMD I2C controller) in the ACPI driver for
AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
- Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
- cpuidle menu governor optimization to avoid a square root
computation in it (Rasmus Villemoes).
- Fix for potential use-after-free in the generic device properties
framework (Heikki Krogerus).
- Updates of the generic power domains (genpd) framework including
support for multiple power states of a domain, fixes and debugfs
output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
Geert Uytterhoeven).
- Intel RAPL power capping driver updates to reduce IPI overhead in
it (Jacob Pan).
- System suspend/hibernation code cleanups (Eric Biggers, Saurabh
Sengar).
- Year 2038 fix for the process freezer (Abhilash Jindal).
- turbostat utility updates including new features (decoding of more
registers and CPUID fields, sub-second intervals support, GFX MHz
and RC6 printout, --out command line option), fixes (syscall jitter
detection and workaround, reductioin of the number of syscalls
made, fixes related to Xeon x200 processors, compiler warning
fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)"
* tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits)
tools/power turbostat: bugfix: TDP MSRs print bits fixing
tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
tools/power turbostat: call __cpuid() instead of __get_cpuid()
tools/power turbostat: indicate SMX and SGX support
tools/power turbostat: detect and work around syscall jitter
tools/power turbostat: show GFX%rc6
tools/power turbostat: show GFXMHz
tools/power turbostat: show IRQs per CPU
tools/power turbostat: make fewer systems calls
tools/power turbostat: fix compiler warnings
tools/power turbostat: add --out option for saving output in a file
tools/power turbostat: re-name "%Busy" field to "Busy%"
tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
tools/power turbostat: allow sub-sec intervals
ACPI / APEI: ERST: Fixed leaked resources in erst_init
ACPI / APEI: Fix leaked resources
intel_pstate: Do not skip samples partially
intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
...
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull NOHZ updates from Ingo Molnar:
"NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors
the NOHZ 'can the tick be stopped?' infrastructure and related code to
be data driven, and harmonizes the naming and handling of all the
various properties"
[ This makes the ugly "fetch_or()" macro that the scheduler used
internally a new generic helper, and does a bad job at it.
I'm pulling it, but I've asked Ingo and Frederic to get this
fixed up ]
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched-clock: Migrate to use new tick dependency mask model
posix-cpu-timers: Migrate to use new tick dependency mask model
sched: Migrate sched to use new tick dependency mask model
sched: Account rr tasks
perf: Migrate perf to use new tick dependency mask model
nohz: Use enum code for tick stop failure tracing message
nohz: New tick dependency mask
nohz: Implement wide kick on top of irq work
atomic: Export fetch_or()
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Make schedstats a runtime tunable (disabled by default) and
optimize it via static keys.
As most distributions enable CONFIG_SCHEDSTATS=y due to its
instrumentation value, this is a nice performance enhancement.
(Mel Gorman)
- Implement 'simple waitqueues' (swait): these are just pure
waitqueues without any of the more complex features of full-blown
waitqueues (callbacks, wake flags, wake keys, etc.). Simple
waitqueues have less memory overhead and are faster.
Use simple waitqueues in the RCU code (in 4 different places) and
for handling KVM vCPU wakeups.
(Peter Zijlstra, Daniel Wagner, Thomas Gleixner, Paul Gortmaker,
Marcelo Tosatti)
- sched/numa enhancements (Rik van Riel)
- NOHZ performance enhancements (Rik van Riel)
- Various sched/deadline enhancements (Steven Rostedt)
- Various fixes (Peter Zijlstra)
- ... and a number of other fixes, cleanups and smaller enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits)
sched/cputime: Fix steal_account_process_tick() to always return jiffies
sched/deadline: Remove dl_new from struct sched_dl_entity
Revert "kbuild: Add option to turn incompatible pointer check into error"
sched/deadline: Remove superfluous call to switched_to_dl()
sched/debug: Fix preempt_disable_ip recording for preempt_disable()
sched, time: Switch VIRT_CPU_ACCOUNTING_GEN to jiffy granularity
time, acct: Drop irq save & restore from __acct_update_integrals()
acct, time: Change indentation in __acct_update_integrals()
sched, time: Remove non-power-of-two divides from __acct_update_integrals()
sched/rt: Kick RT bandwidth timer immediately on start up
sched/debug: Add deadline scheduler bandwidth ratio to /proc/sched_debug
sched/debug: Move sched_domain_sysctl to debug.c
sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
sched/rt: Fix PI handling vs. sched_setscheduler()
sched/core: Remove duplicated sched_group_set_shares() prototype
sched/fair: Consolidate nohz CPU load update code
sched/fair: Avoid using decay_load_missed() with a negative value
sched/deadline: Always calculate end of period on sched_yield()
sched/cgroup: Fix cgroup entity load tracking tear-down
rcu: Use simple wait queues where possible in rcutree
...
* pm-cpufreq: (94 commits)
intel_pstate: Do not skip samples partially
intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
intel_pstate: Optimize calculation for max/min_perf_adj
intel_pstate: Remove extra conversions in pid calculation
cpufreq: Move scheduler-related code to the sched directory
Revert "cpufreq: postfix policy directory with the first CPU in related_cpus"
cpufreq: Reduce cpufreq_update_util() overhead a bit
cpufreq: Select IRQ_WORK if CPU_FREQ_GOV_COMMON is set
cpufreq: Remove 'policy->governor_enabled'
cpufreq: Rename __cpufreq_governor() to cpufreq_governor()
cpufreq: Relocate handle_update() to kill its declaration
cpufreq: governor: Drop unnecessary checks from show() and store()
cpufreq: governor: Fix race in dbs_update_util_handler()
cpufreq: governor: Make gov_set_update_util() static
cpufreq: governor: Narrow down the dbs_data_mutex coverage
cpufreq: governor: Make dbs_data_mutex static
cpufreq: governor: Relocate definitions of tuners structures
cpufreq: governor: Move per-CPU data to the common code
cpufreq: governor: Make governor private data per-policy
...
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.
Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).
Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poision prior to returning.
In the case of CPU hotplug, CPUs exit the kernel a number of levels deep
in C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
When a CPU is subsequently brought back into the kernel via a different
path, depending on stackframe, layout calls to instrumented functions
may hit this stale poison, resulting in (spurious) KASAN splats to the
console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a mechanism by which parts of the cpufreq subsystem
("setpolicy" drivers or the core) can register callbacks to be
executed from cpufreq_update_util() which is invoked by the
scheduler's update_load_avg() on CPU utilization changes.
This allows the "setpolicy" drivers to dispense with their timers
and do all of the computations they need and frequency/voltage
adjustments in the update_load_avg() code path, among other things.
The update_load_avg() changes were suggested by Peter Zijlstra.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Pull nohz enhancements from Frederic Weisbecker:
"Currently in nohz full configs, the tick dependency is checked
asynchronously by nohz code from interrupt and context switch for each
concerned subsystem with a set of function provided by these. Such
functions are made of many conditions and details that can be heavyweight
as they are called on fastpath: sched_can_stop_tick(),
posix_cpu_timer_can_stop_tick(), perf_event_can_stop_tick()...
Thomas suggested a few months ago to make that tick dependency check
synchronous. Instead of checking subsystems details from each interrupt
to guess if the tick can be stopped, every subsystem that may have a tick
dependency should set itself a flag specifying the state of that
dependency. This way we can verify if we can stop the tick with a single
lightweight mask check on fast path.
This conversion from a pull to a push model to implement tick dependency
is the core feature of this patchset that is split into:
* Nohz wide kick simplification
* Improve nohz tracing
* Introduce tick dependency mask
* Migrate scheduler, posix timers, perf events and sched clock tick
dependencies to the tick dependency mask."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The callers of steal_account_process_tick() expect it to return
whether a jiffy should be considered stolen or not.
Currently the return value of steal_account_process_tick() is in
units of cputime, which vary between either jiffies or nsecs
depending on CONFIG_VIRT_CPU_ACCOUNTING_GEN.
If cputime has nsecs granularity and there is a tiny amount of
stolen time (a few nsecs, say) then we will consider the entire
tick stolen and will not account the tick on user/system/idle,
causing /proc/stats to show invalid data.
The fix is to change steal_account_process_tick() to accumulate
the stolen time and only account it once it's worth a jiffy.
(Thanks to Frederic Weisbecker for suggestions to fix a bug in my
first version of the patch.)
Signed-off-by: Chris Friesen <chris.friesen@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/56DBBDB8.40305@mail.usask.ca
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The dl_new field of struct sched_dl_entity is currently used to
identify new deadline tasks, so that their deadline and runtime
can be properly initialised.
However, these tasks can be easily identified by checking if
their deadline is smaller than the current time when they switch
to SCHED_DEADLINE. So, dl_new can be removed by introducing this
check in switched_to_dl(); this allows to simplify the
SCHED_DEADLINE code.
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457350024-7825-2-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:
u64 steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.
Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.
None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.
Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of checking sched_clock_stable from the nohz subsystem to verify
its tick dependency, migrate it to the new mask in order to include it
to the all-in-one check.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.
Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:
SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO : Don't need the tick (no round-robin)
SCHED_RR : Need the tick if more than 1 task of the same priority
for round robin (simplified with checking if more than
one SCHED_RR task no matter what priority).
SCHED_NORMAL : Need the tick if more than 1 task for round-robin.
We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.
Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
In order to evaluate the scheduler tick dependency without probing
context switches, we need to know how much SCHED_RR and SCHED_FIFO tasks
are enqueued as those policies don't have the same preemption
requirements.
To prepare for that, let's account SCHED_RR tasks, we'll be able to
deduce SCHED_FIFO tasks as well from it and the total RT tasks in the
runqueue.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Given that wq_worker_sleeping() could only be called for a
CPU it is running on, we do not need passing a CPU ID as an
argument.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Make the RCU CPU_DYING_IDLE callback an explicit function call, so it gets
invoked at the proper place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.870167933@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Kill the busy spinning on the control side and just wait for the hotplugged
cpu to tell that it reached the dead state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.776157858@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Let the upcoming cpu kick the hotplug thread and let itself complete the
bringup. That way the controll side can just wait for the completion or later
when we made the hotplug machinery async not care at all.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.697655464@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the scheduler cpu online notifier part to the hotplug core. This is
anyway the highest priority callback and we need that functionality right now
for the next changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.200791046@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
if (A || B) {
} else if (A && !B) {
}
If A we'll take the first branch, if !A we will not satisfy the second.
Therefore the second branch will never be taken.
Reported-by: luca abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160225140149.GK6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The preempt_disable() invokes preempt_count_add() which saves the caller
in ->preempt_disable_ip. It uses CALLER_ADDR1 which does not look for
its caller but for the parent of the caller. Which means we get the correct
caller for something like spin_lock() unless the architectures inlines
those invocations. It is always wrong for preempt_disable() or
local_bh_disable().
This patch makes the function get_lock_parent_ip() which tries
CALLER_ADDR0,1,2 if the former is a locking function.
This seems to record the preempt_disable() caller properly for
preempt_disable() itself as well as for get_cpu_var() or
local_bh_disable().
Steven asked for the get_parent_ip() -> get_lock_parent_ip() rename.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160226135456.GB18244@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When profiling syscall overhead on nohz-full kernels,
after removing __acct_update_integrals() from the profile,
native_sched_clock() remains as the top CPU user. This can be
reduced by moving VIRT_CPU_ACCOUNTING_GEN to jiffy granularity.
This will reduce timing accuracy on nohz_full CPUs to jiffy
based sampling, just like on normal CPUs. It results in
totally removing native_sched_clock from the profile, and
significantly speeding up the syscall entry and exit path,
as well as irq entry and exit, and KVM guest entry & exit.
Additionally, only call the more expensive functions (and
advance the seqlock) when jiffies actually changed.
This code relies on another CPU advancing jiffies when the
system is busy. On a nohz_full system, this is done by a
housekeeping CPU.
A microbenchmark calling an invalid syscall number 10 million
times in a row speeds up an additional 30% over the numbers
with just the previous patches, for a total speedup of about
40% over 4.4 and 4.5-rc1.
Run times for the microbenchmark:
4.4 3.8 seconds
4.5-rc1 3.7 seconds
4.5-rc1 + first patch 3.3 seconds
4.5-rc1 + first 3 patches 3.1 seconds
4.5-rc1 + all patches 2.3 seconds
A non-NOHZ_FULL cpu (not the housekeeping CPU):
all kernels 1.86 seconds
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: clark@redhat.com
Cc: eric.dumazet@gmail.com
Cc: fweisbec@gmail.com
Cc: luto@amacapital.net
Link: http://lkml.kernel.org/r/1455152907-18495-5-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I've been debugging why deadline tasks can cause the RT scheduler to
throttle, even when the deadline tasks are only taking up 50% of the
CPU and RT tasks are not even using 1% of the CPU. Here's what I found.
In order to keep a CPU from being hogged by RT tasks, the deadline
scheduler adds its run time (delta_exec) to the rt_time of the RT
bandwidth. That way, if the two use more than 95% of the CPU within one
second (default settings), the RT tasks are throttled to allow non RT
tasks to run.
Although the deadline tasks add their run time to the RT bandwidth, it
lets the RT tasks do the accounting. This is where the problem lies. If
a deadline task runs for a bit, and no RT tasks are running, then it
will continually add to the RT rt_time that is used to calculate how
much CPU the RT tasks use. But no RT period is in play, and this
accumulation of the runtime never gets reset.
When an RT task finally gets to run, and the watchdog goes off, it can
see that the RT task has used more than it should of, because the
deadline task added all this runtime to its rt_time. Then the RT task
that just woke up gets throttled for no good reason.
I also noticed that when an RT task is queued, it starts the timer to
account for overload and such. But that timer goes off one period
later, which may be too late and the extra rt_time will trigger a
throttle.
This is a quick work around to the problem. When a new RT task is
queued, the bandwidth timer is set to go off immediately. Then the
timer can clear out the extra time added to the rt_time while there was
no RT task running. This stops my tests from triggering the throttle,
and it will still throttle if an RT task runs too much, even while a
deadline task is running.
A better solution may be to subtract the bandwidth that the deadline
task uses from the rt_runtime, and add it back when its finished. Then
there wont be a need for runtime tracking of the time used by deadline
tasks.
I may play with that solution tomorrow.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <juri.lelli@gmail.com>
Cc: <williams@redhat.com>
Cc: Clark Williams
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160216183746.349ec98b@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Playing with SCHED_DEADLINE and cpusets, I found that I was unable to create
new SCHED_DEADLINE tasks, with the error of EBUSY as if the bandwidth was
already used up. I then realized there wa no way to see what bandwidth is
used by the runqueues to debug the issue.
By adding the dl_bw->bw and dl_bw->total_bw to the output of the deadline
info in /proc/sched_debug, this allows us to see what bandwidth has been
reserved and where a problem may exist.
For example, before the issue we see the ratio of the bandwidth:
# cat /proc/sys/kernel/sched_rt_runtime_us
950000
# cat /proc/sys/kernel/sched_rt_period_us
1000000
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[1]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[2]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[3]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[4]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[5]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[6]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
dl_rq[7]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 0
Note: (950000 / 1000000) << 20 == 996147
After I played with cpusets and hit the issue, the result is now:
# grep dl /proc/sched_debug
dl_rq[0]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[1]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[2]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[3]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : 104857
dl_rq[4]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[5]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[6]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
dl_rq[7]:
.dl_nr_running : 0
.dl_bw->bw : 996147
.dl_bw->total_bw : -104857
This shows that there is definitely a problem as we should never have a
negative total bandwidth.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.756849091@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The sched_domain_sysctl setup is only enabled when SCHED_DEBUG is
configured. As debug.c is only compiled when SCHED_DEBUG is configured as
well, move the setup of sched_domain_sysctl into that file.
Note, the (un)register_sched_domain_sysctl() functions had to be changed
from static to allow access to them from core.c.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.599278093@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As /sys/kernel/debug/sched_features is only created when SCHED_DEBUG is enabled, and the file
debug.c is only compiled when SCHED_DEBUG is enabled, it makes sense to move
sched_feature setup into that file and get rid of the #ifdef.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.464193063@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andrea Parri reported:
> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
> T1 (prio = 20)
> lock(rtmutex);
>
> T2 (prio = 20)
> blocks on rtmutex (rt_nr_boosted = 0 on T1's rq)
>
> T1 (prio = 20)
> sys_set_scheduler(prio = 0)
> [new_effective_prio == oldprio]
> T1 prio = 20 (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
> T1 (prio = 20)
> unlock(rtmutex)
> wakeup(T2)
> adjust_prio(T1)
> [prio != rt_mutex_getprio(T1)]
> dequeue(T1)
> rt_nr_boosted = (unsigned long)(-1)
> ...
> T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
> WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.
So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.
So this was introduced at around v3.14, by:
c365c292d0 ("sched: Consider pi boosting in setscheduler()")
which fixed another problem exactly because that dequeue/enqueue, joy.
Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.
In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.
Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Lets factorize a bit of code there. We'll even have a third user soon.
While at it, standardize the idle update function name against the
others.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1452700891-21807-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
decay_load_missed() cannot handle nagative values, so we need to prevent
using the function with a negative value.
Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: perterz@infradead.org
Fixes: 5954327548 ("sched/fair: Prepare __update_cpu_load() to handle active tickless")
Link: http://lkml.kernel.org/r/20160115070749.GA1914@X58A-UD3R
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Steven noticed that occasionally a sched_yield() call would not result
in a wait for the next period edge as expected.
It turns out that when we call update_curr_dl() and end up with
delta_exec <= 0, we will bail early and fail to throttle.
Further inspection of the yield code revealed that yield_task_dl()
clearing dl.runtime is wrong too, it will not account the last bit of
runtime which could result in dl.runtime < 0, which in turn means that
replenish would gift us with too much runtime.
Fix both issues by not relying on the dl.runtime value for yield.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160223122822.GP6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a cgroup's CPU runqueue is destroyed, it should remove its
remaining load accounting from its parent cgroup.
The current site for doing so it unsuited because its far too late and
unordered against other cgroup removal (->css_free() will be, but we're also
in an RCU callback).
Put it in the ->css_offline() callback, which is the start of cgroup
destruction, right after the group has been made unavailable to
userspace. The ->css_offline() callbacks are called in hierarchical order
after the following v4.4 commit:
aa226ff4a1 ("cgroup: make sure a parent css isn't offlined before its children")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When CONFIG_GCOV is enabled, gcc decides to put context_switch()
out-of-line, which is inconsistent with its normal behavior.
It also causes an objtool warning because __schedule() no longer inlines
context_switch(), so the "STACK_FRAME_NON_STANDARD(__schedule)"
statement loses its effect.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/d62aee926b6e303394e34a06999a964dc2773cf6.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
objtool reports the following warnings for __schedule():
kernel/sched/core.o: warning: objtool:__schedule()+0x3c0: duplicate frame pointer save
kernel/sched/core.o: warning: objtool:__schedule()+0x3fd: sibling call from callable instruction with changed frame pointer
kernel/sched/core.o: warning: objtool:__schedule()+0x40a: call without frame pointer save/setup
kernel/sched/core.o: warning: objtool:__schedule()+0x7fd: frame pointer state mismatch
kernel/sched/core.o: warning: objtool:__schedule()+0x421: frame pointer state mismatch
Basically it's confused by two unusual attributes of the switch_to()
macro:
1. It saves prev's frame pointer to the old stack and restores next's
frame pointer from the new stack.
2. For new tasks it jumps directly to ret_from_fork.
Eventually it would probably be a good idea to clean up the
ret_from_fork hack so that new tasks are created with a valid initial
stack, as suggested by Andy:
https://lkml.kernel.org/r/CALCETrWsqCw4L1qKO9j9L5F+4ED4viuLQTFc=n1pKBZfFPQUFg@mail.gmail.com
Then __schedule() could return normally into the new code and objtool
hopefully wouldn't have a problem anymore.
In the meantime, mark its stack frame as non-standard so we can have a
baseline with no objtool warnings. The marker also serves as a reminder
that this code could be improved a bit.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/91190e324ebd7fcd01748d508d0dfd4693e84d91.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing wait queue support has support for custom wake up call
backs, wake flags, wake key (passed to call back) and exclusive
flags that allow wakers to be tagged as exclusive, for limiting
the number of wakers.
In a lot of cases, none of these features are used, and hence we
can benefit from a slimmed down version that lowers memory overhead
and reduces runtime overhead.
The concept originated from -rt, where waitqueues are a constant
source of trouble, as we can't convert the head lock to a raw
spinlock due to fancy and long lasting callbacks.
With the removal of custom callbacks, we can use a raw lock for
queue list manipulations, hence allowing the simple wait support
to be used in -rt.
[Patch is from PeterZ which is based on Thomas version. Commit message is
written by Paul G.
Daniel: - Fixed some compile issues
- Added non-lazy implementation of swake_up_locked as suggested
by Boqun Feng.]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-2-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove an unnecessary assignment of variable not used any more.
( This has no runtime effects as GCC is smart enough to optimize
this out. )
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455159578-17256-1-git-send-email-byungchul.park@lge.com
[ Edited the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Export fetch_or() that's implemented and used internally by the
scheduler. We are going to use it for NO_HZ so make it generally
available.
Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The pseudo-interleaving in NUMA placement has a fundamental problem:
using hard usage thresholds to spread memory equally between nodes
can prevent workloads from converging, or keep memory "trapped" on
nodes where the workload is barely running any more.
In order for workloads to properly converge, the memory migration
should not be stopped when nodes reach parity, but instead be
distributed according to how heavily memory is used from each node.
This way memory migration and task migration reinforce each other,
instead of one putting the brakes on the other.
Remove the hard thresholds from the pseudo-interleaving code, and
instead use a more gradual policy on memory placement. This also
seems to improve convergence of workloads that do not run flat out,
but sleep in between bursts of activity.
We still want to slow down NUMA scanning and migration once a workload
has settled on a few actively used nodes, so keep the 3/4 hysteresis
in place. Keep track of whether a workload is actively running on
multiple nodes, so task_numa_migrate does a full scan of the system
for better task placement.
In the case of running 3 SPECjbb2005 instances on a 4 node system,
this code seems to result in fairer distribution of memory between
nodes, with more memory bandwidth for each instance.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/20160125170739.2fc9a641@annuminas.surriel.com
[ Minor readability tweaks. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
schedstats is very useful during debugging and performance tuning but it
incurs overhead to calculate the stats. As such, even though it can be
disabled at build time, it is often enabled as the information is useful.
This patch adds a kernel command-line and sysctl tunable to enable or
disable schedstats on demand (when it's built in). It is disabled
by default as someone who knows they need it can also learn to enable
it when necessary.
The benefits are dependent on how scheduler-intensive the workload is.
If it is then the patch reduces the number of cycles spent calculating
the stats with a small benefit from reducing the cache footprint of the
scheduler.
These measurements were taken from a 48-core 2-socket
machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
single socket machine 8-core machine with Intel i7-3770 processors.
netperf-tcp
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean 64 560.45 ( 0.00%) 575.98 ( 2.77%)
Hmean 128 766.66 ( 0.00%) 795.79 ( 3.80%)
Hmean 256 950.51 ( 0.00%) 981.50 ( 3.26%)
Hmean 1024 1433.25 ( 0.00%) 1466.51 ( 2.32%)
Hmean 2048 2810.54 ( 0.00%) 2879.75 ( 2.46%)
Hmean 3312 4618.18 ( 0.00%) 4682.09 ( 1.38%)
Hmean 4096 5306.42 ( 0.00%) 5346.39 ( 0.75%)
Hmean 8192 10581.44 ( 0.00%) 10698.15 ( 1.10%)
Hmean 16384 18857.70 ( 0.00%) 18937.61 ( 0.42%)
Small gains here, UDP_STREAM showed nothing intresting and neither did
the TCP_RR tests. The gains on the 8-core machine were very similar.
tbench4
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Hmean mb/sec-1 500.85 ( 0.00%) 522.43 ( 4.31%)
Hmean mb/sec-2 984.66 ( 0.00%) 1018.19 ( 3.41%)
Hmean mb/sec-4 1827.91 ( 0.00%) 1847.78 ( 1.09%)
Hmean mb/sec-8 3561.36 ( 0.00%) 3611.28 ( 1.40%)
Hmean mb/sec-16 5824.52 ( 0.00%) 5929.03 ( 1.79%)
Hmean mb/sec-32 10943.10 ( 0.00%) 10802.83 ( -1.28%)
Hmean mb/sec-64 15950.81 ( 0.00%) 16211.31 ( 1.63%)
Hmean mb/sec-128 15302.17 ( 0.00%) 15445.11 ( 0.93%)
Hmean mb/sec-256 14866.18 ( 0.00%) 15088.73 ( 1.50%)
Hmean mb/sec-512 15223.31 ( 0.00%) 15373.69 ( 0.99%)
Hmean mb/sec-1024 14574.25 ( 0.00%) 14598.02 ( 0.16%)
Hmean mb/sec-2048 13569.02 ( 0.00%) 13733.86 ( 1.21%)
Hmean mb/sec-3072 12865.98 ( 0.00%) 13209.23 ( 2.67%)
Small gains of 2-4% at low thread counts and otherwise flat. The
gains on the 8-core machine were slightly different
tbench4 on 8-core i7-3770 single socket machine
Hmean mb/sec-1 442.59 ( 0.00%) 448.73 ( 1.39%)
Hmean mb/sec-2 796.68 ( 0.00%) 794.39 ( -0.29%)
Hmean mb/sec-4 1322.52 ( 0.00%) 1343.66 ( 1.60%)
Hmean mb/sec-8 2611.65 ( 0.00%) 2694.86 ( 3.19%)
Hmean mb/sec-16 2537.07 ( 0.00%) 2609.34 ( 2.85%)
Hmean mb/sec-32 2506.02 ( 0.00%) 2578.18 ( 2.88%)
Hmean mb/sec-64 2511.06 ( 0.00%) 2569.16 ( 2.31%)
Hmean mb/sec-128 2313.38 ( 0.00%) 2395.50 ( 3.55%)
Hmean mb/sec-256 2110.04 ( 0.00%) 2177.45 ( 3.19%)
Hmean mb/sec-512 2072.51 ( 0.00%) 2053.97 ( -0.89%)
In constract, this shows a relatively steady 2-3% gain at higher thread
counts. Due to the nature of the patch and the type of workload, it's
not a surprise that the result will depend on the CPU used.
hackbench-pipes
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v3r1
Amean 1 0.0637 ( 0.00%) 0.0660 ( -3.59%)
Amean 4 0.1229 ( 0.00%) 0.1181 ( 3.84%)
Amean 7 0.1921 ( 0.00%) 0.1911 ( 0.52%)
Amean 12 0.3117 ( 0.00%) 0.2923 ( 6.23%)
Amean 21 0.4050 ( 0.00%) 0.3899 ( 3.74%)
Amean 30 0.4586 ( 0.00%) 0.4433 ( 3.33%)
Amean 48 0.5910 ( 0.00%) 0.5694 ( 3.65%)
Amean 79 0.8663 ( 0.00%) 0.8626 ( 0.43%)
Amean 110 1.1543 ( 0.00%) 1.1517 ( 0.22%)
Amean 141 1.4457 ( 0.00%) 1.4290 ( 1.16%)
Amean 172 1.7090 ( 0.00%) 1.6924 ( 0.97%)
Amean 192 1.9126 ( 0.00%) 1.9089 ( 0.19%)
Some small gains and losses and while the variance data is not included,
it's close to the noise. The UMA machine did not show anything particularly
different
pipetest
4.5.0-rc1 4.5.0-rc1
vanilla nostats-v2r2
Min Time 4.13 ( 0.00%) 3.99 ( 3.39%)
1st-qrtle Time 4.38 ( 0.00%) 4.27 ( 2.51%)
2nd-qrtle Time 4.46 ( 0.00%) 4.39 ( 1.57%)
3rd-qrtle Time 4.56 ( 0.00%) 4.51 ( 1.10%)
Max-90% Time 4.67 ( 0.00%) 4.60 ( 1.50%)
Max-93% Time 4.71 ( 0.00%) 4.65 ( 1.27%)
Max-95% Time 4.74 ( 0.00%) 4.71 ( 0.63%)
Max-99% Time 4.88 ( 0.00%) 4.79 ( 1.84%)
Max Time 4.93 ( 0.00%) 4.83 ( 2.03%)
Mean Time 4.48 ( 0.00%) 4.39 ( 1.91%)
Best99%Mean Time 4.47 ( 0.00%) 4.39 ( 1.91%)
Best95%Mean Time 4.46 ( 0.00%) 4.38 ( 1.93%)
Best90%Mean Time 4.45 ( 0.00%) 4.36 ( 1.98%)
Best50%Mean Time 4.36 ( 0.00%) 4.25 ( 2.49%)
Best10%Mean Time 4.23 ( 0.00%) 4.10 ( 3.13%)
Best5%Mean Time 4.19 ( 0.00%) 4.06 ( 3.20%)
Best1%Mean Time 4.13 ( 0.00%) 4.00 ( 3.39%)
Small improvement and similar gains were seen on the UMA machine.
The gain is small but it stands to reason that doing less work in the
scheduler is a good thing. The downside is that the lack of schedstats and
tracepoints may be surprising to experts doing performance analysis until
they find the existence of the schedstats= parameter or schedstats sysctl.
It will be automatically activated for latencytop and sleep profiling to
alleviate the problem. For tracepoints, there is a simple warning as it's
not safe to activate schedstats in the context when it's known the tracepoint
may be wanted but is unavailable.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The isolcpus= kernel boot parameter restricts userspace from scheduling on
the specified CPUs.
If a CPU is specified that is outside the range of 0 to nr_cpu_ids,
cpulist_parse() will return -ERANGE, return an empty cpulist, and
fail silently.
This patch adds an error message to isolated_cpu_setup() to indicate to
the user that something has gone awry, and returns 0 on error.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454596680-10367-1-git-send-email-prarit@redhat.com
[ Twiddled some details. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fixes from Thomas Gleixner:
"Three small fixes in the scheduler/core:
- use after free in the numa code
- crash in the numa init code
- a simple spelling fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
pid: Fix spelling in comments
sched/numa: Fix use-after-free bug in the task_numa_compare
sched: Fix crash in sched_init_numa()
* pm-cpuidle:
cpuidle: coupled: remove unused define cpuidle_coupled_lock
cpuidle: fix fallback mechanism for suspend to idle in absence of enter_freeze
* pm-cpufreq:
cpufreq: cpufreq-dt: avoid uninitialized variable warnings:
cpufreq: pxa2xx: fix pxa_cpufreq_change_voltage prototype
cpufreq: Use list_is_last() to check last entry of the policy list
cpufreq: Fix NULL reference crash while accessing policy->governor_data
* pm-domains:
PM / Domains: Fix typo in comment
PM / Domains: Fix potential deadlock while adding/removing subdomains
PM / domains: fix lockdep issue for all subdomains
* pm-sleep:
PM: APM_EMULATION does not depend on PM
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The following message can be observed on the Ubuntu v3.13.0-65 with KASan
backported:
==================================================================
BUG: KASan: use after free in task_numa_find_cpu+0x64c/0x890 at addr ffff880dd393ecd8
Read of size 8 by task qemu-system-x86/3998900
=============================================================================
BUG kmalloc-128 (Tainted: G B ): kasan: bad access detected
-----------------------------------------------------------------------------
INFO: Allocated in task_numa_fault+0xc1b/0xed0 age=41980 cpu=18 pid=3998890
__slab_alloc+0x4f8/0x560
__kmalloc+0x1eb/0x280
task_numa_fault+0xc1b/0xed0
do_numa_page+0x192/0x200
handle_mm_fault+0x808/0x1160
__do_page_fault+0x218/0x750
do_page_fault+0x1a/0x70
page_fault+0x28/0x30
SyS_poll+0x66/0x1a0
system_call_fastpath+0x1a/0x1f
INFO: Freed in task_numa_free+0x1d2/0x200 age=62 cpu=18 pid=0
__slab_free+0x2ab/0x3f0
kfree+0x161/0x170
task_numa_free+0x1d2/0x200
finish_task_switch+0x1d2/0x210
__schedule+0x5d4/0xc60
schedule_preempt_disabled+0x40/0xc0
cpu_startup_entry+0x2da/0x340
start_secondary+0x28f/0x360
Call Trace:
[<ffffffff81a6ce35>] dump_stack+0x45/0x56
[<ffffffff81244aed>] print_trailer+0xfd/0x170
[<ffffffff8124ac36>] object_err+0x36/0x40
[<ffffffff8124cbf9>] kasan_report_error+0x1e9/0x3a0
[<ffffffff8124d260>] kasan_report+0x40/0x50
[<ffffffff810dda7c>] ? task_numa_find_cpu+0x64c/0x890
[<ffffffff8124bee9>] __asan_load8+0x69/0xa0
[<ffffffff814f5c38>] ? find_next_bit+0xd8/0x120
[<ffffffff810dda7c>] task_numa_find_cpu+0x64c/0x890
[<ffffffff810de16c>] task_numa_migrate+0x4ac/0x7b0
[<ffffffff810de523>] numa_migrate_preferred+0xb3/0xc0
[<ffffffff810e0b88>] task_numa_fault+0xb88/0xed0
[<ffffffff8120ef02>] do_numa_page+0x192/0x200
[<ffffffff81211038>] handle_mm_fault+0x808/0x1160
[<ffffffff810d7dbd>] ? sched_clock_cpu+0x10d/0x160
[<ffffffff81068c52>] ? native_load_tls+0x82/0xa0
[<ffffffff81a7bd68>] __do_page_fault+0x218/0x750
[<ffffffff810c2186>] ? hrtimer_try_to_cancel+0x76/0x160
[<ffffffff81a6f5e7>] ? schedule_hrtimeout_range_clock.part.24+0xf7/0x1c0
[<ffffffff81a7c2ba>] do_page_fault+0x1a/0x70
[<ffffffff81a772e8>] page_fault+0x28/0x30
[<ffffffff8128cbd4>] ? do_sys_poll+0x1c4/0x6d0
[<ffffffff810e64f6>] ? enqueue_task_fair+0x4b6/0xaa0
[<ffffffff810233c9>] ? sched_clock+0x9/0x10
[<ffffffff810cf70a>] ? resched_task+0x7a/0xc0
[<ffffffff810d0663>] ? check_preempt_curr+0xb3/0x130
[<ffffffff8128b5c0>] ? poll_select_copy_remaining+0x170/0x170
[<ffffffff810d3bc0>] ? wake_up_state+0x10/0x20
[<ffffffff8112a28f>] ? drop_futex_key_refs.isra.14+0x1f/0x90
[<ffffffff8112d40e>] ? futex_requeue+0x3de/0xba0
[<ffffffff8112e49e>] ? do_futex+0xbe/0x8f0
[<ffffffff81022c89>] ? read_tsc+0x9/0x20
[<ffffffff8111bd9d>] ? ktime_get_ts+0x12d/0x170
[<ffffffff8108f699>] ? timespec_add_safe+0x59/0xe0
[<ffffffff8128d1f6>] SyS_poll+0x66/0x1a0
[<ffffffff81a830dd>] system_call_fastpath+0x1a/0x1f
As commit 1effd9f193 ("sched/numa: Fix unsafe get_task_struct() in
task_numa_assign()") points out, the rcu_read_lock() cannot protect the
task_struct from being freed in the finish_task_switch(). And the bug
happens in the process of calculation of imp which requires the access of
p->numa_faults being freed in the following path:
do_exit()
current->flags |= PF_EXITING;
release_task()
~~delayed_put_task_struct()~~
schedule()
...
...
rq->curr = next;
context_switch()
finish_task_switch()
put_task_struct()
__put_task_struct()
task_numa_free()
The fix here to get_task_struct() early before end of dst_rq->lock to
protect the calculation process and also put_task_struct() in the
corresponding point if finally the dst_rq->curr somehow cannot be
assigned.
Additional credit to Liang Chen who helped fix the error logic and add the
put_task_struct() to the place it missed.
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jay.vosburgh@canonical.com
Cc: liang.chen@canonical.com
Link: http://lkml.kernel.org/r/1453264618-17645-1-git-send-email-gavin.guo@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 51164251f5 "sched / idle: Drop default_idle_call() fallback
from call_cpuidle()" made find_deepest_state() return non-negative
value and check all the states with index > 0. Also as a result,
find_deepest_state() returns 0 even when enter_freeze callbacks are not
implemented and enter_freeze_proper() is called which ends up crashing
the kernel.
This patch updates the check for index > 0 in cpuidle_enter_freeze and
cpuidle_idle_call(when idle_should_freeze is true) to restore the
suspend-to-idle functionality in absence of enter_freeze callback.
Fixes: 51164251f5 "sched / idle: Drop default_idle_call() fallback from call_cpuidle()"
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Modify the driver core and the USB subsystem to allow USB devices
to stay suspended over system suspend/resume cycles if they have
been runtime-suspended already beforehand and fix some bugs on
top of these changes (Tomeu Vizoso, Rafael Wysocki).
- Update ACPICA to upstream revision 20160108, including updates
of the ACPICA's copyright notices, a code fixup resulting from
a regression fix that was necessary in the upstream code only
(the regression fixed by it has never been present in Linux)
and a compiler warning fix (Bob Moore, Lv Zheng).
- Fix a recent regression in the cpuidle menu governor that broke
it on practically all architectures other than x86 and make a
couple of optimizations on top of that fix (Rafael Wysocki).
- Clean up the selection of cpuidle governors depending on whether
or not the kernel is configured for tickless systems (Jean Delvare).
- Revert a recent commit that introduced a regression in the ACPI
backlight driver, address the problem it attempted to fix in a
different way and revert one more cosmetic change depending on
the problematic commit (Hans de Goede).
- Add two more ACPI backlight quirks (Hans de Goede).
- Fix a few minor problems in the core devfreq code, clean it up
a bit and update the MAINTAINERS information related to it
(Chanwoo Choi, MyungJoo Ham).
- Improve an error message in the ACPI fan driver (Andy Lutomirski).
- Fix a recent build regression in the cpupower tool (Shreyas Prabhu).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJWoCQ4AAoJEILEb/54YlRxLscQALEFVKSRnNaco72OqqRZs9Bu
1RI6TgHTpZxR+Ef0+QWqE1QMnDwfImGhKDbSRm/t3S2sMYYZbAOL8cu4y6GmkBv4
bOon/f9WEoPlQCFoo/6U4u8H45rNT5W9zX5+Bva8x+4Wu3n2J1QdvirnS5JHeHe1
o6tGLaHuZXSwX8SLnCk8gJYK1VhATxbubJtpcVtvlnAhO11qUAwsscCrkUmB60i7
5hLyrZb06hoa/hZVcIefGFuSd9qPhzDMQE2M20EohQ7UVkNJQdY9QNHMqCk2P42T
nMWCNSwGnwfiO1p9ByXqunOFBCmyL7P+KV/DHsz6TFCVjz+jeG53Kqey9SkSJ/2W
iaAE80K9MfOMvg8j7rib6fTn5uXBwRfqdeUDF/Hr64QqJoRn3R2LX4HmZe4L8ufb
zA1rece67o8FD+7p7GkNbT3rPV/kA62tn/moFk446X5N+b261Kz90t1DVci8kRVf
k+1gcvEdqO0GPpEHoirfXrBvQFixqkXakKj4r2aAob/DldQeLX7CkOUuRRJ1ykec
bxwI9R0v8MlVe5rDxg+rPB0I9EFxRDmxqxpU5j0MRWxKnMRzLvBtHuk8YNVS/eU1
xwyJOGcwF6yI0PaCFggPqmhebSrWLE7wJxaK+3bC+yiDTvHYPjB+4MfQrmkRAwwM
azgb+ZgXDYx5wXeb8EjB
=bKJ9
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management and ACPI updates from Rafael Wysocki:
"This includes fixes on top of the previous batch of PM+ACPI updates
and some new material as well.
From the new material perspective the most significant are the driver
core changes that should allow USB devices to stay suspended over
system suspend/resume cycles if they have been runtime-suspended
already beforehand. Apart from that, ACPICA is updated to upstream
revision 20160108 (cosmetic mostly, but including one fixup on top of
the previous ACPICA update) and there are some devfreq updates the
didn't make it before (due to timing).
A few recent regressions are fixed, most importantly in the cpuidle
menu governor and in the ACPI backlight driver and some x86 platform
drivers depending on it.
Some more bugs are fixed and cleanups are made on top of that.
Specifics:
- Modify the driver core and the USB subsystem to allow USB devices
to stay suspended over system suspend/resume cycles if they have
been runtime-suspended already beforehand and fix some bugs on top
of these changes (Tomeu Vizoso, Rafael Wysocki).
- Update ACPICA to upstream revision 20160108, including updates of
the ACPICA's copyright notices, a code fixup resulting from a
regression fix that was necessary in the upstream code only (the
regression fixed by it has never been present in Linux) and a
compiler warning fix (Bob Moore, Lv Zheng).
- Fix a recent regression in the cpuidle menu governor that broke it
on practically all architectures other than x86 and make a couple
of optimizations on top of that fix (Rafael Wysocki).
- Clean up the selection of cpuidle governors depending on whether or
not the kernel is configured for tickless systems (Jean Delvare).
- Revert a recent commit that introduced a regression in the ACPI
backlight driver, address the problem it attempted to fix in a
different way and revert one more cosmetic change depending on the
problematic commit (Hans de Goede).
- Add two more ACPI backlight quirks (Hans de Goede).
- Fix a few minor problems in the core devfreq code, clean it up a
bit and update the MAINTAINERS information related to it (Chanwoo
Choi, MyungJoo Ham).
- Improve an error message in the ACPI fan driver (Andy Lutomirski).
- Fix a recent build regression in the cpupower tool (Shreyas
Prabhu)"
* tag 'pm+acpi-4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (32 commits)
cpuidle: menu: Avoid pointless checks in menu_select()
sched / idle: Drop default_idle_call() fallback from call_cpuidle()
cpupower: Fix build error in cpufreq-info
cpuidle: Don't enable all governors by default
cpuidle: Default to ladder governor on ticking systems
time: nohz: Expose tick_nohz_enabled
ACPICA: Update version to 20160108
ACPICA: Silence a -Wbad-function-cast warning when acpi_uintptr_t is 'uintptr_t'
ACPICA: Additional 2016 copyright changes
ACPICA: Reduce regression fix divergence from upstream ACPICA
ACPI / video: Add disable_backlight_sysfs_if quirk for the Toshiba Satellite R830
ACPI / video: Revert "thinkpad_acpi: Use acpi_video_handles_brightness_key_presses()"
ACPI / video: Document acpi_video_handles_brightness_key_presses() a bit
ACPI / video: Fix using an uninitialized mutex / list_head in acpi_video_handles_brightness_key_presses()
ACPI / video: Revert "ACPI / video: driver must be registered before checking for keypresses"
ACPI / fan: Improve acpi_device_update_power error message
ACPI / video: Add disable_backlight_sysfs_if quirk for the Toshiba Portege R700
cpuidle: menu: Fix menu_select() for CPUIDLE_DRIVER_STATE_START == 0
MAINTAINERS: Add devfreq-event entry
MAINTAINERS: Add missing git repository and directory for devfreq
...
* pm-cpuidle:
cpuidle: menu: Avoid pointless checks in menu_select()
sched / idle: Drop default_idle_call() fallback from call_cpuidle()
cpuidle: Don't enable all governors by default
cpuidle: Default to ladder governor on ticking systems
time: nohz: Expose tick_nohz_enabled
cpuidle: menu: Fix menu_select() for CPUIDLE_DRIVER_STATE_START == 0
After commit 9c4b2867ed (cpuidle: menu: Fix menu_select() for
CPUIDLE_DRIVER_STATE_START == 0) it is clear that menu_select()
cannot return negative values. Moreover, ladder_select_state()
will never return a negative value too, so make find_deepest_state()
return non-negative values too and drop the default_idle_call()
fallback from call_cpuidle().
This eliminates one branch from the idle loop and makes the governors
and find_deepest_state() handle the case when all states have been
disabled from sysfs consistently.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
The following PowerPC commit:
c118baf802 ("arch/powerpc/mm/numa.c: do not allocate bootmem memory for non existing nodes")
avoids allocating bootmem memory for non existent nodes.
But when DEBUG_PER_CPU_MAPS=y is enabled, my powerNV system failed to boot
because in sched_init_numa(), cpumask_or() operation was done on
unallocated nodes.
Fix that by making cpumask_or() operation only on existing nodes.
[ Tested with and w/o DEBUG_PER_CPU_MAPS=y on x86 and PowerPC. ]
Reported-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: <gkurz@linux.vnet.ibm.com>
Cc: <grant.likely@linaro.org>
Cc: <nikunj@linux.vnet.ibm.com>
Cc: <vdavydov@parallels.com>
Cc: <linuxppc-dev@lists.ozlabs.org>
Cc: <linux-mm@kvack.org>
Cc: <peterz@infradead.org>
Cc: <benh@kernel.crashing.org>
Cc: <paulus@samba.org>
Cc: <mpe@ellerman.id.au>
Cc: <anton@samba.org>
Link: http://lkml.kernel.org/r/1452884483-11676-1-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the vmstat updater is not deferrable as a result of commit
ba4877b9ca ("vmstat: do not use deferrable delayed work for
vmstat_update"). This in turn can cause multiple interruptions of the
applications because the vmstat updater may run at
Make vmstate_update deferrable again and provide a function that folds
the differentials when the processor is going to idle mode thus
addressing the issue of the above commit in a clean way.
Note that the shepherd thread will continue scanning the differentials
from another processor and will reenable the vmstat workers if it
detects any changes.
Fixes: ba4877b9ca ("vmstat: do not use deferrable delayed work for vmstat_update")
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- cgroup v2 interface is now official. It's no longer hidden behind a
devel flag and can be mounted using the new cgroup2 fs type.
Unfortunately, cpu v2 interface hasn't made it yet due to the
discussion around in-process hierarchical resource distribution and
only memory and io controllers can be used on the v2 interface at the
moment.
- The existing documentation which has always been a bit of mess is
relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
is added as the authoritative documentation for the v2 interface.
- Some features are added through for-4.5-ancestor-test branch to
enable netfilter xt_cgroup match to use cgroup v2 paths. The actual
netfilter changes will be merged through the net tree which pulled in
the said branch.
- Various cleanups
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rename cgroup documentations
cgroup: fix a typo.
cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
cgroup: demote subsystem init messages to KERN_DEBUG
cgroup: Fix uninitialized variable warning
cgroup: put controller Kconfig options in meaningful order
cgroup: clean up the kernel configuration menu nomenclature
cgroup_pids: fix a typo.
Subject: cgroup: Fix incomplete dd command in blkio documentation
cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
cpuset: Replace all instances of time_t with time64_t
cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
- Stolen ticks and PV wallclock support for arm/arm64.
- Add grant copy ioctl to gntdev device.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWk5IUAAoJEFxbo/MsZsTRLxwH/1BDcrbQDRc5hxUOG9JEYSUt
H/lMjvZRShPkzweijdNon95ywAXhcSbkS9IV2Mp0+CZV7VyeymW7QIW/g4+G6iRg
+LnoV77PAhPv/cmsr1pENXqRCclvemlxQOf7UyWLezuKhB71LC+oNaEnpk/tPIZS
et/qef+m/SgSP5R91nO0Esv2KfP7za0UrgJf3Ee4GzjSeDkya0Hko06Cy3yc1/RT
082kHpQ1/KFcHHh2qhdCQwyzhq/cwFkuDA6ksKYJoxC6YAVC2mvvkuIOZYbloHDL
c/dzuP9qjjxOZ7Gblv2cmg+RE4UqRfBhxmMycxSCcwW/Mt5LaftCpAxpBQKq2/8=
=6F/q
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Xen features and fixes for 4.5-rc0:
- Stolen ticks and PV wallclock support for arm/arm64
- Add grant copy ioctl to gntdev device"
* tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/gntdev: add ioctl for grant copy
x86/xen: don't reset vcpu_info on a cancelled suspend
xen/gntdev: constify mmu_notifier_ops structures
xen/grant-table: constify gnttab_ops structure
xen/time: use READ_ONCE
xen/x86: convert remaining timespec to timespec64 in xen_pvclock_gtod_notify
xen/x86: support XENPF_settime64
xen/arm: set the system time in Xen via the XENPF_settime64 hypercall
xen/arm: introduce xen_read_wallclock
arm: extend pvclock_wall_clock with sec_hi
xen: introduce XENPF_settime64
xen/arm: introduce HYPERVISOR_platform_op on arm and arm64
xen: rename dom0_op to platform_op
xen/arm: account for stolen ticks
arm64: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
arm: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
missing include asm/paravirt.h in cputime.c
xen: move xen_setup_runstate_info and get_runstate_snapshot to drivers/xen/time.c
Pull workqueue update from Tejun Heo:
"Workqueue changes for v4.5. One cleanup patch and three to improve
the debuggability.
Workqueue now has a stall detector which dumps workqueue state if any
worker pool hasn't made forward progress over a certain amount of time
(30s by default) and also triggers a warning if a workqueue which can
be used in memory reclaim path tries to wait on something which can't
be.
These should make workqueue hangs a lot easier to debug."
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: simplify the apply_workqueue_attrs_locked()
workqueue: implement lockup detector
watchdog: introduce touch_softlockup_watchdog_sched()
workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- tickless load average calculation enhancements (Byungchul Park)
- vtime handling enhancements (Frederic Weisbecker)
- scalability improvement via properly aligning a key structure field
(Jiri Olsa)
- various stop_machine() fixes (Oleg Nesterov)
- sched/numa enhancement (Rik van Riel)
- various fixes and improvements (Andi Kleen, Dietmar Eggemann,
Geliang Tang, Hiroshi Shimamoto, Joonwoo Park, Peter Zijlstra,
Waiman Long, Wanpeng Li, Yuyang Du)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task()
sched/core: Move sched_entity::avg into separate cache line
x86/fpu: Properly align size in CHECK_MEMBER_AT_END_OF() macro
sched/deadline: Fix the earliest_dl.next logic
sched/fair: Disable the task group load_avg update for the root_task_group
sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline
sched/fair: Avoid redundant idle_cpu() call in update_sg_lb_stats()
sched/core: Move the sched_to_prio[] arrays out of line
sched/cputime: Convert vtime_seqlock to seqcount
sched/cputime: Introduce vtime accounting check for readers
sched/cputime: Rename vtime_accounting_enabled() to vtime_accounting_cpu_enabled()
sched/cputime: Correctly handle task guest time on housekeepers
sched/cputime: Clarify vtime symbols and document them
sched/cputime: Remove extra cost in task_cputime()
sched/fair: Make it possible to account fair load avg consistently
sched/fair: Modify the comment about lock assumptions in migrate_task_rq_fair()
stop_machine: Clean up the usage of the preemption counter in cpu_stopper_thread()
stop_machine: Shift the 'done != NULL' check from cpu_stop_signal_done() to callers
stop_machine: Kill cpu_stop_done->executed
stop_machine: Change __stop_cpus() to rely on cpu_stop_queue_work()
...
Pull locking updates from Ingo Molnar:
"So we have a laundry list of locking subsystem changes:
- continuing barrier API and code improvements
- futex enhancements
- atomics API improvements
- pvqspinlock enhancements: in particular lock stealing and adaptive
spinning
- qspinlock micro-enhancements"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op
futex: Cleanup the goto confusion in requeue_pi()
futex: Remove pointless put_pi_state calls in requeue()
futex: Document pi_state refcounting in requeue code
futex: Rename free_pi_state() to put_pi_state()
futex: Drop refcount if requeue_pi() acquired the rtmutex
locking/barriers, arch: Remove ambiguous statement in the smp_store_mb() documentation
lcoking/barriers, arch: Use smp barriers in smp_store_release()
locking/cmpxchg, arch: Remove tas() definitions
locking/pvqspinlock: Queue node adaptive spinning
locking/pvqspinlock: Allow limited lock stealing
locking/pvqspinlock: Collect slowpath lock statistics
sched/core, locking: Document Program-Order guarantees
locking, sched: Introduce smp_cond_acquire() and use it
locking/pvqspinlock, x86: Optimize the PV unlock code path
locking/qspinlock: Avoid redundant read of next pointer
locking/qspinlock: Prefetch the next node cacheline
locking/qspinlock: Use _acquire/_release() versions of cmpxchg() & xchg()
atomics: Add test for atomic operations with _relaxed variants
Pull RCU updates from Ingo Molnar:
"The changes in this cycle were:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits on top
of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
One thing I should note is that these pieces of documentation are
fairly large files:
.../RCU/Design/Requirements/Requirements.html | 2897 ++++++++++++++++++++
.../RCU/Design/Requirements/Requirements.htmlx | 2741 ++++++++++++++++++
and are written in HTML, not the usual .txt style. I hope they are
fine"
Paul McKenney explains the html docs:
"For whatever it is worth, the reason for this unconventional choice
was that attempts to do the diagrams in ASCII art failed miserably.
And attempts to do ASCII art for the upcoming documentation of the
data structures failed even more miserably"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
sysrq: Fix warning in sysrq generated crash.
list: Add lockless list traversal primitives
rcu: Make rcu_gp_init() be bool rather than int
rcu: Move wakeup out from under rnp->lock
rcu: Fix comment for rcu_dereference_raw_notrace
rcu: Don't redundantly disable irqs in rcu_irq_{enter,exit}()
rcu: Make cpu_needs_another_gp() be bool
rcu: Eliminate unused rcu_init_one() argument
rcu: Remove TINY_RCU bloat from pointless boot parameters
torture: Place console.log files correctly from the get-go
torture: Abbreviate console error dump
rcutorture: Print symbolic name for ->gp_state
rcutorture: Print symbolic name for rcu_torture_writer_state
rcutorture: Remove CONFIG_RCU_USER_QS from rcutorture selftest doc
rcutorture: Default grace period to three minutes, allow override
rcutorture: Dump stack when GP kthread stalls
rcutorture: Flag nonexistent RCU GP kthread
rcutorture: Add batch number to script printout
Documentation/memory-barriers.txt: Fix ACCESS_ONCE thinko
documentation: Update RCU requirements based on expedited changes
...
Pull RCU changes from Paul E. McKenney:
- Adding transitivity uniformly to rcu_node structure ->lock
acquisitions. (This is implemented by the first two commits
on top of v4.4-rc2 due to the pervasive nature of this change.)
- Documentation updates, including RCU requirements.
- Expedited grace-period changes.
- Miscellaneous fixes.
- Linked-list fixes, courtesy of KTSAN.
- Torture-test updates.
- Late-breaking fix to sysrq-generated crash.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a newly created task is selected to go to a different CPU in fork
balance when it wakes up the first time, its load averages should
not be removed from the source CPU since they are never added to
it before. The same is also applicable to a never used group entity.
Fix it in remove_entity_load_avg(): when entity's last_update_time
is 0, simply return. This should precisely identify the case in
question, because in other migrations, the last_update_time is set
to 0 after remove_entity_load_avg().
Reported-by: Steve Muckle <steve.muckle@linaro.org>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
[peterz: cfs_rq_last_update_time]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20151216233427.GJ28098@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
earliest_dl.next should cache deadline of the earliest ready task that
is also enqueued in the pushable rbtree, as pull algorithm uses this
information to find candidates for migration: if the earliest_dl.next
deadline of source rq is earlier than the earliest_dl.curr deadline of
destination rq, the task from the source rq can be pulled.
However, current implementation only guarantees that earliest_dl.next is
the deadline of the next ready task instead of the next pushable task;
which will result in potentially holding both rqs' lock and find nothing
to migrate because of affinity constraints. In addition, current logic
doesn't update the next candidate for pushing in pick_next_task_dl(),
even if the running task is never eligible.
This patch fixes both problems by updating earliest_dl.next when
pushable dl task is enqueued/dequeued, similar to what we already do for
RT.
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449135730-27202-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make 'r' 64-bit type to avoid overflow in 'r * LOAD_AVG_MAX'
on 32-bit systems:
UBSAN: Undefined behaviour in kernel/sched/fair.c:2785:18
signed integer overflow:
87950 * 47742 cannot be represented in type 'int'
The most likely effect of this bug are bad load average numbers
resulting in weird scheduling. It's also likely that this can
persist for a longer time - until the system goes idle for
a long time so that all load avg numbers get reset.
[ This is the CFS load average metric, not the procfs output, which
is separate. ]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
Link: http://lkml.kernel.org/r/1450097243-30137-1-git-send-email-aryabinin@virtuozzo.com
[ Improved the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add include asm/paravirt.h to cputime.c, as steal_account_process_tick
calls paravirt_steal_clock, which is defined in asm/paravirt.h.
The ifdef CONFIG_PARAVIRT is necessary because not all archs have an
asm/paravirt.h to include.
The reason why currently cputime.c compiles, even though include
<asm/paravirt.h> is missing, is that on x86 asm/paravirt.h is included
by one of the other headers included in kernel/sched/cputime.c:
On arm and arm64, where I am about to introduce asm/paravirt.h and
stolen time support, without #include <asm/paravirt.h> in cputime.c, I
would get an error.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Jan Stancek reported that I wrecked things for him by fixing things for
Vladimir :/
His report was due to an UNINTERRUPTIBLE wait getting -EINTR, which
should not be possible, however my previous patch made this possible by
unconditionally checking signal_pending().
We cannot use current->state as was done previously, because the
instruction after the store to that variable it can be changed. We must
instead pass the initial state along and use that.
Fixes: 68985633bc ("sched/wait: Fix signal handling in bit wait helpers")
Reported-by: Jan Stancek <jstancek@redhat.com>
Reported-by: Chris Mason <clm@fb.com>
Tested-by: Jan Stancek <jstancek@redhat.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Chris Mason <clm@fb.com>
Reviewed-by: Paul Turner <pjt@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: tglx@linutronix.de
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: hpa@zytor.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup fixes from Tejun Heo:
"More change than I'd have liked at this stage. The pids controller
and the changes made to cgroup core to support it introduced and
revealed several important issues.
- Assigning membership to a newly created task and migrating it can
race leading to incorrect accounting. Oleg fixed it by widening
threadgroup synchronization. It looks like we'll be able to merge
it with a different percpu rwsem which is used in fork path making
things simpler and cheaper.
- The recent change to extend cgroup membership to zombies (so that
pid accounting can extend till the pid is actually released) missed
pinning the underlying data structures leading to use-after-free.
Fixed.
- v2 hierarchy was calling subsystem callbacks with the wrong target
cgroup_subsys_state based on the incorrect assumption that they
share the same target. pids is the first controller affected by
this. Subsys callbacks updated so that they can deal with
multi-target migrations"
* 'for-4.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup_pids: don't account for the root cgroup
cgroup: fix handling of multi-destination migration from subtree_control enabling
cgroup_freezer: simplify propagation of CGROUP_FROZEN clearing in freezer_attach()
cgroup: pids: kill pids_fork(), simplify pids_can_fork() and pids_cancel_fork()
cgroup: pids: fix race between cgroup_post_fork() and cgroup_migrate()
cgroup: make css_set pin its css's to avoid use-afer-free
cgroup: fix cftype->file_offset handling
Pull perf fixes from Ingo Molnar:
"This tree includes four core perf fixes for misc bugs, three fixes to
x86 PMU drivers, and two updates to old email addresses"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Do not send exit event twice
perf/x86/intel: Fix INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA macro
perf/x86/intel: Make L1D_PEND_MISS.FB_FULL not constrained on Haswell
perf: Fix PERF_EVENT_IOC_PERIOD deadlock
treewide: Remove old email address
perf/x86: Fix LBR call stack save/restore
perf: Update email address in MAINTAINERS
perf/core: Robustify the perf_cgroup_from_task() RCU checks
perf/core: Fix RCU problem with cgroup context switching code
touch_softlockup_watchdog() is used to tell watchdog that scheduler
stall is expected. One group of usage is from paths where the task
may not be able to yield for a long time such as performing slow PIO
to finicky device and coming out of suspend. The other is to account
for scheduler and timer going idle.
For scheduler softlockup detection, there's no reason to distinguish
the two cases; however, workqueue lockup detector is planned and it
can use the same signals from the former group while the latter would
spuriously prevent detection. This patch introduces a new function
touch_softlockup_watchdog_sched() and convert the latter group to call
it instead. For now, it just calls touch_softlockup_watchdog() and
there's no functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
The following commit which went into mainline through networking tree
3b13758f51 ("cgroups: Allow dynamically changing net_classid")
conflicts in net/core/netclassid_cgroup.c with the following pending
fix in cgroup/for-4.4-fixes.
1f7dd3e5a6 ("cgroup: fix handling of multi-destination migration from subtree_control enabling")
The former separates out update_classid() from cgrp_attach() and
updates it to walk all fds of all tasks in the target css so that it
can be used from both migration and config change paths. The latter
drops @css from cgrp_attach().
Resolve the conflict by making cgrp_attach() call update_classid()
with the css from the first task. We can revive @tset walking in
cgrp_attach() but given that net_cls is v1 only where there always is
only one target css during migration, this is fine.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Nina Schiff <ninasc@fb.com>
We need the scheduler's fastpaths to be, well, fast, and unnecessarily
disabling and re-enabling interrupts is not necessarily consistent with
this goal. Especially given that there are regions of the scheduler that
already have interrupts disabled.
This commit therefore moves the call to rcu_note_context_switch()
to one of the interrupts-disabled regions of the scheduler, and
removes the now-redundant disabling and re-enabling of interrupts from
rcu_note_context_switch() and the functions it calls.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Shift rcu_note_context_switch() to avoid deadlock, as suggested
by Peter Zijlstra. ]
Currently, the update_tg_load_avg() function attempts to update the
tg's load_avg value whenever the load changes even for root_task_group
where the load_avg value will never be used. This patch will disable
the load_avg update when the given task group is the root_task_group.
Running a Java benchmark with noautogroup and a 4.3 kernel on a
16-socket IvyBridge-EX system, the amount of CPU time (as reported by
perf) consumed by task_tick_fair() which includes update_tg_load_avg()
decreased from 0.71% to 0.22%, a more than 3X reduction. The Max-jOPs
results also increased slightly from 983015 to 986449.
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-4-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.
Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:
10.52% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
9.66% 0.05% java [kernel.vmlinux] [k] hrtimer_interrupt
8.65% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
8.56% 0.00% java [kernel.vmlinux] [k] update_process_times
8.07% 0.03% java [kernel.vmlinux] [k] scheduler_tick
6.91% 1.78% java [kernel.vmlinux] [k] task_tick_fair
5.24% 5.04% java [kernel.vmlinux] [k] update_cfs_shares
In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.
This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.
By doing so, the perf profile became:
9.44% 0.00% java [kernel.vmlinux] [k] smp_apic_timer_interrupt
8.74% 0.01% java [kernel.vmlinux] [k] hrtimer_interrupt
7.83% 0.03% java [kernel.vmlinux] [k] tick_sched_timer
7.74% 0.00% java [kernel.vmlinux] [k] update_process_times
7.27% 0.03% java [kernel.vmlinux] [k] scheduler_tick
5.94% 1.74% java [kernel.vmlinux] [k] task_tick_fair
4.15% 3.92% java [kernel.vmlinux] [k] update_cfs_shares
The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:
Before patch - Max-jOPs: 907533 Critical-jOps: 134877
After patch - Max-jOPs: 916011 Critical-jOps: 142366
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Part of the responsibility of the update_sg_lb_stats() function is to
update the idle_cpus statistical counter in struct sg_lb_stats. This
check is done by calling idle_cpu(). The idle_cpu() function, in
turn, checks a number of fields within the run queue structure such
as rq->curr and rq->nr_running.
With the current layout of the run queue structure, rq->curr and
rq->nr_running are in separate cachelines. The rq->curr variable is
checked first followed by nr_running. As nr_running is also accessed
by update_sg_lb_stats() earlier, it makes no sense to load another
cacheline when nr_running is not 0 as idle_cpu() will always return
false in this case.
This patch eliminates this redundant cacheline load by checking the
cached nr_running before calling idle_cpu().
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448478580-26467-2-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)
The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.
Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cputime can only be updated by the current task itself, even in
vtime case. So we can safely use seqcount instead of seqlock as there
is no writer concurrency involved.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Readers need to know if vtime runs at all on some CPU somewhere, this
is a fast-path check to determine if we need to check further the need
to add up any tickless cputime delta.
This fast path check uses context tracking state because vtime is tied
to context tracking as of now. This check appears to be confusing though
so lets use a vtime function that deals with context tracking details
in vtime implementation instead.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-7-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vtime_accounting_enabled() checks if vtime is running on the current CPU
and is as such a misnomer. Lets rename it to a function that reflect its
locality. We are going to need the current name for a function that tells
if vtime runs at all on some CPU.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task runs on a housekeeper (a CPU running with the periodic tick
with neighbours running tickless), it doesn't account cputime using vtime
but relies on the tick. Such a task has its vtime_snap_whence value set
to VTIME_INACTIVE.
Readers won't handle that correctly though. As long as vtime is running
on some CPU, readers incorretly assume that vtime runs on all CPUs and
always compute the tickless cputime delta, which is only junk on
housekeepers.
So lets fix this with checking that the target runs on a vtime CPU through
the appropriate state check before computing the tickless delta.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
VTIME_SLEEPING state happens either when:
1) The task is sleeping and no tickless delta is to be added on the task
cputime stats.
2) The CPU isn't running vtime at all, so the same properties of 1) applies.
Lets rename the vtime symbol to reflect both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is an extra cost in task_cputime() and task_cputime_scaled() when
nohz_full is not activated. When vtime accounting is not enabled, we
don't need to get deltas of utime and stime under vtime seqlock.
This patch removes that cost with adding a shortcut route if vtime
accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless cputime delta.
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-3-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.
This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.
These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These are some notes on the scheduler locking and how it provides
program order guarantees on SMP systems.
( This commit is in the locking tree, because the new documentation
refers to a newly introduced locking primitive. )
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.
This primitive has two benefits:
- it documents control dependencies,
- its typically cheaper than using smp_load_acquire() in a loop.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Oleg noticed that its possible to falsely observe p->on_cpu == 0 such
that we'll prematurely continue with the wakeup and effectively run p on
two CPUs at the same time.
Even though the overlap is very limited; the task is in the middle of
being scheduled out; it could still result in corruption of the
scheduler data structures.
CPU0 CPU1
set_current_state(...)
<preempt_schedule>
context_switch(X, Y)
prepare_lock_switch(Y)
Y->on_cpu = 1;
finish_lock_switch(X)
store_release(X->on_cpu, 0);
try_to_wake_up(X)
LOCK(p->pi_lock);
t = X->on_cpu; // 0
context_switch(Y, X)
prepare_lock_switch(X)
X->on_cpu = 1;
finish_lock_switch(Y)
store_release(Y->on_cpu, 0);
</preempt_schedule>
schedule();
deactivate_task(X);
X->on_rq = 0;
if (X->on_rq) // false
if (t) while (X->on_cpu)
cpu_relax();
context_switch(X, ..)
finish_lock_switch(X)
store_release(X->on_cpu, 0);
Avoid the load of X->on_cpu being hoisted over the X->on_rq load.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
/proc/stats shows invalid gtime when the thread is running in guest.
When vtime accounting is not enabled, we cannot get a valid delta.
The delta is calculated with now - tsk->vtime_snap, but tsk->vtime_snap
is only updated when vtime accounting is runtime enabled.
This patch makes task_gtime() just return gtime without computing the
buggy non-existing tickless delta when vtime accounting is not enabled.
Use context_tracking_is_enabled() to check if vtime is accounting on
some cpu, in which case only we need to check the tickless delta. This
way we fix the gtime value regression on machines not running nohz full.
The kernel config contains CONFIG_VIRT_CPU_ACCOUNTING_GEN=y and
CONFIG_NO_HZ_FULL_ALL=n and boot without nohz_full.
I ran and stop a busy loop in VM and see the gtime in host.
Dump the 43rd field which shows the gtime in every second:
# while :; do awk '{print $3" "$43}' /proc/3955/task/4014/stat; sleep 1; done
S 4348
R 7064566
R 7064766
R 7064967
R 7065168
S 4759
S 4759
During running busy loop, it returns large value.
After applying this patch, we can see right gtime.
# while :; do awk '{print $3" "$43}' /proc/10913/task/10956/stat; sleep 1; done
S 5338
R 5365
R 5465
R 5566
R 5666
S 5726
S 5726
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
root_domain::rto_mask allocated through alloc_cpumask_var()
contains garbage data, this may cause problems. For instance,
When doing pull_rt_task(), it may do useless iterations if
rto_mask retains some extra garbage bits. Worse still, this
violates the isolated domain rule for clustered scheduling
using cpuset, because the tasks(with all the cpus allowed)
belongs to one root domain can be pulled away into another
root domain.
The patch cleans the garbage by using zalloc_cpumask_var()
instead of alloc_cpumask_var() for root_domain::rto_mask
allocation, thereby addressing the issues.
Do the same thing for root_domain's other cpumask memembers:
dlo_mask, span, and online.
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1449057179-29321-1-git-send-email-xlpang@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because wakeups can (fundamentally) be late, a task might not be in
the expected state. Therefore testing against a task's state is racy,
and can yield false positives.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: oleg@redhat.com
Fixes: 9067ac85d5 ("wake_up_process() should be never used to wakeup a TASK_STOPPED/TRACED task")
Link: http://lkml.kernel.org/r/1448933660-23082-1-git-send-email-sasha.levin@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Vladimir reported getting RCU stall warnings and bisected it back to
commit:
743162013d ("sched: Remove proliferation of wait_on_bit() action functions")
That commit inadvertently reversed the calls to schedule() and signal_pending(),
thereby not handling the case where the signal receives while we sleep.
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mark.rutland@arm.com
Cc: neilb@suse.de
Cc: oleg@redhat.com
Fixes: 743162013d ("sched: Remove proliferation of wait_on_bit() action functions")
Fixes: cbbce82209 ("SCHED: add some "wait..on_bit...timeout()" interfaces.")
Link: http://lkml.kernel.org/r/20151201130404.GL3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
The comment describing migrate_task_rq_fair() says that the caller
should hold p->pi_lock. But in some cases the caller can hold
task_rq(p)->lock instead of p->pi_lock. So the comment is broken and
this patch fixes it.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447806899-20303-1-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use list_is_singular() to check if run_list has only one entry.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a5453fafd735affcf28e53a1d0a3d6965cb5dbb5.1447582547.git.geliangtang@163.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At present scheduler resets task's wait start timestamp when the task
migrates to another rq. This misleads scheduler itself into reporting
less wait time than actual by omitting time spent for waiting prior to
migration and also more wait count than actual by counting migration as
wait end event which can be seen by trace or /proc/<pid>/sched with
CONFIG_SCHEDSTATS=y.
Carry forward migrating task's wait time prior to migration and
don't count migration as a wait end event to fix such statistics error.
In order to determine whether task is migrating mark task->on_rq with
TASK_ON_RQ_MIGRATING while dequeuing and enqueuing due to migration.
Signed-off-by: Joonwoo Park <joonwoop@codeaurora.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ohaugan@codeaurora.org
Link: http://lkml.kernel.org/r/20151113033854.GA4247@codeaurora.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There were still a number of references to my old Red Hat email
address in the kernel source. Remove these while keeping the
Red Hat copyright notices intact.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is a fundamental mismatch between the runtime based NUMA scanning
at the task level, and the wall clock time NUMA scanning at the mm level.
On a severely overloaded system, with very large processes, this mismatch
can cause the system to spend all of its time in change_prot_numa().
This can happen if the task spends at least two ticks in change_prot_numa(),
and only gets two ticks of CPU time in the real time between two scan
intervals of the mm.
This patch ensures that a task never spends more than 3% of run
time scanning PTEs. It does that by ensuring that in-between
task_numa_work() runs, the task spends at least 32x as much time on
other things than it did on task_numa_work().
This is done stochastically: if a timer tick happens, or the task
gets rescheduled during task_numa_work(), we delay a future run of
task_numa_work() until the task has spent at least 32x the amount of
CPU time doing something else, as it spent inside task_numa_work().
The longer task_numa_work() takes, the more likely it is this happens.
If task_numa_work() takes very little time, chances are low that that
code will do anything, but we will not care.
Reported-and-tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1446756983-28173-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Usually the tick can be stopped for an idle CPU in NOHZ. However in NOHZ_FULL
mode, a non-idle CPU's tick can also be stopped. However, update_cpu_load_nohz()
does not consider the case a non-idle CPU's tick has been stopped at all.
This patch makes the update_cpu_load_nohz() know if the calling path comes
from NOHZ_FULL or idle NOHZ.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447115762-19734-3-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are some cases where distance between ticks is more than one tick
while the CPU is not idle, e.g. full NOHZ.
However __update_cpu_load() assumes it is the idle tickless case if the
distance between ticks is more than 1, even though it can be the active
tickless case as well. Thus in the active tickless case, updating the CPU
load will not be performed correctly.
Where the current code assumes the load for each tick is zero, this is
(obviously) not true in non-idle tickless case. We can approximately
consider the load ~= this_rq->cpu_load[0] during tickless in non-idle
tickless case.
Signed-off-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1444816056-11886-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit cd126afe83 ("sched/fair: Remove rq's runnable avg") got rid of
rq->avg and so there is no need to update it any more when entering or
exiting idle.
Remove the now empty functions idle_{enter|exit}_fair().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1445342681-17171-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The push_irq_work_func() function is conditionally defined only
when both CONFIG_SMP and HAVE_RT_PUSH_IPI are defined, but the
forward declaration remains visibile without HAVE_RT_PUSH_IPI,
causing a gcc warning in ARM64 allnoconfig:
kernel/sched/rt.c:68:13: warning: 'push_irq_work_func' declared 'static' but never defined [-Wunused-function]
This changes the code to use the same condition for both the
declaration and the function definition, which gets rid of the
warning.
As Peter Zijlstra, we can possibly get rid of the whole HAVE_RT_PUSH_IPI
thing after:
8053871d0f ("smp: Fix smp_call_function_single_async() locking")
Until that is done, this patch can be used to avoid the warning.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: b6366f048e ("sched/rt: Use IPI to trigger RT task push migration instead of pulling")
Link: http://lkml.kernel.org/r/3828565.oKfGk7yNIT@wuerfel
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull scheduler fix from Thomas Gleixner:
"A single fix to prevent math underflow in the numa balancing code"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix math underflow in task_tick_numa()
The NUMA balancing code implements delays in scanning by
advancing curr->node_stamp beyond curr->se.sum_exec_runtime.
With unsigned math, that creates an underflow, which results
in task_numa_work being queued all the time, even when we
don't want to.
Avoiding the math underflow makes it possible to reduce CPU
overhead in the NUMA balancing code.
Reported-and-tested-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: mgorman@suse.de
Link: http://lkml.kernel.org/r/1446756983-28173-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
handling.
PPC: Mostly bug fixes.
ARM: No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite for
IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86: quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new component (in
virt/lib/) that connects VFIO and KVM together. The same infrastructure
will be used for ARM interrupt forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic interrupt
controller will have to wait for 4.5. These will let KVM expose Hyper-V
devices.
- nested virtualization now supports VPID (same as PCID but for vCPUs)
which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for clflushopt,
clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
userspace, which reduces the attack surface of the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten to not
require help from the hypervisor.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
=iv2z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.4.
s390:
A bunch of fixes and optimizations for interrupt and time handling.
PPC:
Mostly bug fixes.
ARM:
No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite
for IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86:
Quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new
component (in virt/lib/) that connects VFIO and KVM together.
The same infrastructure will be used for ARM interrupt
forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic
interrupt controller will have to wait for 4.5. These will let
KVM expose Hyper-V devices.
- nested virtualization now supports VPID (same as PCID but for
vCPUs) which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for
clflushopt, clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel +
IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten
to not require help from the hypervisor"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
KVM: VMX: Fix commit which broke PML
KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
KVM: x86: allow RSM from 64-bit mode
KVM: VMX: fix SMEP and SMAP without EPT
KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
KVM: device assignment: remove pointless #ifdefs
KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
KVM: x86: zero apic_arb_prio on reset
drivers/hv: share Hyper-V SynIC constants with userspace
KVM: x86: handle SMBASE as physical address in RSM
KVM: x86: add read_phys to x86_emulate_ops
KVM: x86: removing unused variable
KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
KVM: arm/arm64: Optimize away redundant LR tracking
KVM: s390: use simple switch statement as multiplexer
KVM: s390: drop useless newline in debugging data
KVM: s390: SCA must not cross page boundaries
KVM: arm: Do not indent the arguments of DECLARE_BITMAP
...
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
Pull scheduler changes from Ingo Molnar:
"The main changes in this cycle were:
- sched/fair load tracking fixes and cleanups (Byungchul Park)
- Make load tracking frequency scale invariant (Dietmar Eggemann)
- sched/deadline updates (Juri Lelli)
- stop machine fixes, cleanups and enhancements for bugs triggered by
CPU hotplug stress testing (Oleg Nesterov)
- scheduler preemption code rework: remove PREEMPT_ACTIVE and related
cleanups (Peter Zijlstra)
- Rework the sched_info::run_delay code to fix races (Peter Zijlstra)
- Optimize per entity utilization tracking (Peter Zijlstra)
- ... misc other fixes, cleanups and smaller updates"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (57 commits)
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
sched: Move cpu_active() tests from stop_two_cpus() into migrate_swap_stop()
sched: Start stopper early
stop_machine: Kill cpu_stop_threads->setup() and cpu_stop_unpark()
stop_machine: Kill smp_hotplug_thread->pre_unpark, introduce stop_machine_unpark()
stop_machine: Change cpu_stop_queue_two_works() to rely on stopper->enabled
stop_machine: Introduce __cpu_stop_queue_work() and cpu_stop_queue_two_works()
stop_machine: Ensure that a queued callback will be called before cpu_stop_park()
sched/x86: Fix typo in __switch_to() comments
sched/core: Remove a parameter in the migrate_task_rq() function
sched/core: Drop unlikely behind BUG_ON()
sched/core: Fix task and run queue sched_info::run_delay inconsistencies
sched/numa: Fix task_tick_fair() from disabling numa_balancing
sched/core: Add preempt_count invariant check
sched/core: More notrace annotations
sched/core: Kill PREEMPT_ACTIVE
sched/core, sched/x86: Kill thread_info::saved_preempt_count
sched/core: Simplify preempt_count tests
sched/core: Robustify preemption leak checks
sched/core: Stop setting PREEMPT_ACTIVE
...