Lots of normal development commits, but perhaps most notable changes are:
* HDMI rework to properly decouple the HDMI audio part from the HDMI video part.
* Restructure omapdss core driver so that it's possible to implement device
tree support. This included changing how platform data is passed to the
drivers, changing display device registration and improving the panel driver's
ability to configure the underlying video output interface.
* Basic support for DSI packet interleaving
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPu2LWAAoJEPo9qoy8lh71bo0P/2iTw1WLHiRqOwwXSqOQHm2U
EFzA4T36qS29h5g9yA1uHnRo2CO7UVL6kOFShk5vzpiBjwZ0e0nPPUxK919hyYEP
vbrOq4dzdIx4+IYhlFusMKi1OR2JhbmOjE7gx3e1fNby7XxXY2TO2/i98lVKT0bi
wcJN3cTtXcwZOjApxudIf0J4A/0YRzqGIumnkYKwZWqiW5Rv1+dfb5/Ml5fhYvsH
IehLQZs8IHtCbM7qw1yDeVAnBUgsuLPCyep3W/zm1MEscboevifw50sFIRwG5GBQ
cmid+Fi7u3R0/yv/UK2XBGFf7PbeZxWyM5nuZ5raajS/X0mxT1fkGcre1AxNzvgE
3gjfS9m40WKLpod1hsbXZsX1ksCiBddvT5xkgoiyhfa2G2TDGnOEHmKE4sYuq7qF
Zc2YuJMahb+iWrPN966Io4PpgscMEjP732b0tg03MtwgR+liajqiuMzA56PDHaTA
bwwFNS3DVIoEpgeN778PWQJ1mRprlYnK7lyJvpGlrEnDh9tM0Xi/35QDlFl1hvAp
ZKD9oSkK0cIvZB690J6pRoaVv0PfjHspxFDX28FICTQROV2lJ5P9JOwGi+Bk9FwD
eBPchUsivnAuhVthp3YwFod5JyN5ZVSD+9Xe9dXUwstRJo9dJMYLY+E41+N4UUS9
BS2/SKvWqc2NcmIgerO3
=I8Se
-----END PGP SIGNATURE-----
Merge tag 'omapdss-for-3.5' of git://github.com/tomba/linux into fbdev-next
Omapdss driver changes for 3.5 merge window.
Lots of normal development commits, but perhaps most notable changes are:
* HDMI rework to properly decouple the HDMI audio part from the HDMI video part.
* Restructure omapdss core driver so that it's possible to implement device
tree support. This included changing how platform data is passed to the
drivers, changing display device registration and improving the panel driver's
ability to configure the underlying video output interface.
* Basic support for DSI packet interleaving
genirq requires that the IRQ requests that do not provided a handler to
use the IRQF_ONESHOT flag. This is to prevent situations in which the irq line
is reenabled while the interrupt is still asserted. While this situation may
not happen in edge type interrupts, genirq still requires to use IRQF_ONESHOT.
Also, remove the IRQF_DISABLED as the flag is now a NOOP and has been
deprecated.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The VENC interfaces uses it's venc_set_timing() function to take in a new set
of timings. If the panel is disabled, it does not disable and re-enable the
interface. Currently, the manager timings are applied in venc_power_on(), these
are not called by set_timings if the panel is disabled. When checking overlay
and manager data, the DSS driver uses the last applied manager timings, and not
the timings held by omap_dss_device struct. Hence, there is a need to apply the
new manager timings even if the panel is disabled.
Apply the manager timings if the VENC panel is disabled.
This is similar to the commit below which fixed the same issue for HDMI/DPI
interfaces:
fcc3661990
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DSS2 driver uses the timings in manager's private data to check the validity of
overlay and manager infos written by the user. For VENC interface, we divide the
Y resolution by half when writing to the DISPC_DIGIT_SIZE register as the
content is interlaced. However, the height of the manager/display with respect
to the content shown through VENC still remains the same.
The VENC driver divides the y_res parameter in omap_video_timings by half, and
then applies the configuration. This leads to manager's private data storing
the wrong Y resolution. Hence, overlay related checks fail.
Ensure that manager's private data stores the original timings, and the Y
resolution is halved only when we write to the DISPC register. This is a hack,
the proper solution would be to pass some sort of interlace parameter which
makes the call whether we should divide y_res or not.
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
TILER is a block in OMAP4's DMM which lets DSS fetch frames in a rotated manner.
Physical memory can be mapped to a portion of OMAP's system address space called
TILER address space. The TILER address space is split into 8 views. Each view
represents a rotated or mirrored form of the mapped physical memory. When a
DISPC overlay's base address is programmed to one of these views, the TILER
fetches the pixels according to the orientation of the view. A view is further
split into 4 containers, each container holds elements of a particular size.
Rotation can be achieved at the granularity of elements in the container. For
more information on TILER, refer to the Memory Subsytem section in OMAP4 TRM.
Rotation type TILER has been added which is used to exploit the capabilities of
these 8 views for performing various rotations.
When fetching from addresses mapped to TILER space, the DISPC DMA can fetch
pixels in either 1D or 2D bursts. The fetch depends on which TILER container we
are accessing. Accessing 8, 16 and 32 bit sized containers requires 2D bursts,
and page mode sized containers require 1D bursts.
The DSS2 user is expected to provide the Tiler address of the view that it is
interested in. This is passed to the paddr and p_uv_addr parameters in
omap_overlay_info. It is also expected to provide the stride value based on the
view's orientation and container type, this should be passed to the screen_width
parameter of omap_overlay_info. In calc_tiler_rotation_offset screen_width is
used to calculate the required row_inc for DISPC. x_predecim and y_predecim are
also used to calculate row_inc and pix_inc thereby adding predecimation support
for TILER.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
If CONFIG_BUG is not enabled, BUG() does not stop the execution. Many
places in code expect the execution to stop, and this causes compiler
warnings about uninitialized variables and returning from a non-void
function without a return value.
This patch fixes the warnings by initializing the variables and
returning properly after BUG() lines. However, the behaviour is still
undefined after the BUG, but this is the choice the user makes when
using CONFIG_BUG=n.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
If CONFIG_BUG is not enabled, BUG() does not stop the execution. Many
places in code expect the execution to stop, and this causes compiler
warnings about uninitialized variables and returning from a non-void
function without a return value.
This patch fixes the warnings by initializing the variables and
returning properly after BUG() lines. However, the behaviour is still
undefined after the BUG, but this is the choice the user makes when
using CONFIG_BUG=n.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
If CONFIG_BUG is not enabled, BUG() does not stop the execution. Many
places in code expect the execution to stop, and this causes compiler
warnings about uninitialized variables and returning from a non-void
function without a return value.
This patch fixes the warnings by initializing the variables and
returning properly after BUG() lines. However, the behaviour is still
undefined after the BUG, but this is the choice the user makes when
using CONFIG_BUG=n.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Commit 05dd0f5308 ("OMAPDSS: DISPC: Update
Accumulator configuration for chroma plane") adds
dispc_ovl_set_accu_uv() function that sets the accu, but the function
only handles YUV and NV12 modes, and BUGs otherwise.
The patch also adds a call to the function, but unfortunately the place
of call was such that the mode could be other than YUV or NV12, thus
crashing the driver.
This patchs moves the call to a slightly later spot, at which point only
YUV and NV12 modes are handled.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Chandrabhanu Mahapatra <cmahapatra@ti.com>
There is a problem related to DSS FIFO thresholds and power management
on OMAP3. It seems that when the full PM hits in, we get underflows. The
core reason is unknown, but after experiments it looks like only
particular FIFO thresholds work correctly.
This bug is related to an earlier patch, which added special FIFO
threshold configuration for OMAP3, because DSI command mode output
didn't work with the normal threshold configuration.
However, as the above work-around worked fine for other output types
also, we currently always configure thresholds in this special way on
OMAP3. In theory there should be negligible difference with this special
way and the standard way. The first paragraph explains what happens in
practice.
This patch changes the driver to use the special threshold configuration
only when the output is a manual update display on OMAP3. This does
include RFBI displays also, and although it hasn't been tested (no
boards using RFBI) I suspect the similar behaviour is present there
also, as the DISPC side should work similarly for DSI command mode and
RFBI.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Cc: Joe Woodward <jw@terrafix.co.uk>
DSI supports interleaving of command mode packets during the HSA, HFP, HBP and
BLLP blanking intervals in a video mode stream. This is useful as a user may
want to read or change the configuration of a panel without stopping the video
stream.
On OMAP DSI, we can queue HS or LP command mode packets in the TX FIFO, and
the DSI HW takes care of interleaving this data during the one of the blanking
intervals. The DSI HW needs to be programmed with the maximum amount of data
that can be interleaved in a particular blanking period. A blanking period
cannot be used to send command mode data for it's complete duration, there is
some amount of time required for the DSI data and clock lanes to transition
to the desired LP or HS state.
Based on the state of the lanes at the beginning and end of the blanking period,
we have different scenarios, with each scenario having a different value of time
required to transition to HS or LP. Refer to the section 'Interleaving Mode' in
OMAP TRM for more info on the scenarios and the equations to calculate the time
required for HS or LP transitions.
We use the scenarios which takes the maximum time for HS or LP transition, this
gives us the minimum amount of time that can be used to interleave command mode
data. The amount of data that can be sent during this minimum time is calculated
for command mode packets both in LP and HS. These are written to the registers
DSI_VM_TIMING4 to DSI_VM_TIMING6.
The calculations don't take into account the time required of transmitting BTA
when doing a DSI read, or verifying if a DSI write went through correctly. Until
these latencies aren't considered, the behaviour of DSI is unpredictable when
a BTA is interleaved during a blanking period. Enhancement of these calculations
is a TODO item.
The calculations are derived from DSI parameter calculation tools written by
Sebastien Fagard <s-fagard@ti.com>
Signed-off-by: Archit Taneja <archit@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
DISPC has two accumulator registers DISPC_VIDp_ACCU_0 and DISPC_VIDp_ACCU_1 each
with horizontal and vertical bit fields. The bit fields can take values in the
range of -1024 to 1023. Based on bit field values DISPC decides on which one out
of 8 phases the filtering starts. DISPC_VIDp_ACCU_0 is used for progressive
output and for interlaced output both DISPC_VIDp_ACCU_0 and DISPC_VIDp_ACCU_1
are used.
The current accumulator values in DISPC scaling logic for chroma plane takes
default values for all color modes and rotation types. So, the horizontal and
vertical up and downsampling accumulator bit field values have been updated for
better performance.
Signed-off-by: Chandrabhanu Mahapatra <cmahapatra@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
The THRESHOLDS register configures thresholds for two interrupts, but
these interrupts are not used in the DIU driver. An early version of the
driver may have used the "lines before vsync" interrupt, which requires
the LS_BF_VS of THRESHOLDS to be initialized.
Unfortunately, the initialization of this register does not do a
read-modify-write to set only LS_BF_VS. On the MPC8610, the value
written is correct. On other chips, like the P1022, the value overwrites
some reserved bits. This results in a performance drop on the P1022.
Since the default value is acceptable as-is on all SOCs, we should just
avoid touching this register.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Rework the interrupt handler so the RX_DONE, FIFO_EMPTY interrupts are
properly detected. This prevents missing the interrupts when there are
other bits set in the INTSRC register than just RX_DONE and FIFO_EMPTY.
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Donghwa Lee <dh09.lee@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Make sure all resources are initialized before interrupt handler is
registered. Pass full platform device name to request_irq() so it
can be distinguished which device has requested an interrupt in cases
there are multiple instances in the system.
Also enable voltage regulators regardless of they have been enabled
by bootloader or not, to make sure other drivers using same regulators
don't disable them unexpectedly.
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Donghwa Lee <dh09.lee@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Use proper PM ops from struct dev_pm_ops rather than the deprecated ones.
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Donghwa Lee <dh09.lee@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Latest SuperH HDMI uses not only HDMI Core Register (HTOP0)
but also HDMI Control Register (HTOP1).
This patch adds HDMI Control Register support.
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Latest SuperH HDMI allows 32bit access only.
But the data is 8bit. So, we can keep compatibility by switching 8/32 bit access.
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
This patch uses pr_debug instead of printk to allow dynamic debugging.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Remove unnecessary headers from the file.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Release bridge, as done on all other paths out of the function.
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Florian Tobias Schandinat <FlorianSchandinat@gmx.de>
Implement the DSS device driver audio support interface in the HDMI
panel driver and generic driver. The implementation relies on the
IP-specific functions that are defined at DSS probe time.
A mixed locking strategy is used. The panel's mutex is used when
the state of the panel is queried as required by the audio functions.
The audio state is protected using a spinlock as users of DSS HDMI
audio functionality might start/stop audio while holding a spinlock.
The mutex and the spinlock are held and released as needed by each
individual function to protect the panel state and the audio state.
Although the panel's audio_start functions does not check whether
the panel is active, the audio _ENABLED state can be reached only
from audio_enable, which does check the state of the panel. Also,
if the panel is ever disabled, the audio state will transition
to _DISABLED. Transitions are always protected by the audio lock.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
As the hdmi_lock mutex is inside the hdmi struct, rename to simply
"lock". This is only a change in the name. There are not changes
in functionality.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
As of today, the only know user of the DSS HDMI audio support is
ASoC. Hence, it makes sense to remap the speaker order to match
the ALSA speaker order. In the future, a dynamic mapping mechanism
may be implemented.
Remapping is needed as the HDMI speaker order is FL/FR/LFE/C/RL/RR/
RLC-FLC/RRC-FLC while the ALSA order is FL/FR/RL/RR/C/LFE/SL/SR.
Refer to CEA-861 Section 6.6.2 for further details.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
The generic HDMI driver does not need to know about the specific
settings of a given IP. Hence, it just passes the audio configuration
and the IP library parses such configuration and sets the IP
accordingly. This patch introduces an IP-specific audio configuration
function.
Also, this patch implements the audio config function for OMAP4. The
DMA, format and core config functions are no longer exposed to the
generic HDMI driver as they are IP-specific.
The audio configuration function caters for 16-bit through 24-bit
audio samples with sample rates from 32kHz and up to 192kHz as well
as up to 8 audio channels.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Add support for more sample rates when calculating N and CTS. This
covers all the audio sample rates that an HDMI source is allowed
to transmit according to the HDMI 1.4a specification.
Also, reorganize the logic for the calculation when using deep color.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
The N and CTS parameters are relevant to all HDMI implementations and
not specific to a given IP. Hence, the calculation is relocated
into the generic HDMI driver.
Also, deep color is not queried but it is still considered in the
calculation of N. This is to be changed when deep color functionality is
implemented in the driver.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Utilize a snd_aes_iec958 struct to write the parameters of the IEC-60958
channel status word into the HDMI IP registers. Hence, the user of the
driver has full control of what parameters are written in the word.
Also, some of the parameters of the I2S structure have been removed
as they are actually IEC-60958 parameters.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Instead of having OMAPDSS HDMI audio functionality depending on the
ASoC HDMI audio driver, use a new config option so that
potential users, including ASoC, may select if needed.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Decouple the enable/disable operation of the HDMI audio wrapper from
audio start/stop. Otherwise, an audio FIFO underflow may occur. The
audio wrapper enablement must be done after configuration and
before audio playback is started.
Signed-off-by: Axel Castaneda Gonzalez <x0055901@ti.com>
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
According to the most up-to-date documentation from Texas Instruments,
the configuration of High Bitrate Audio is not possible. Also, it is
not possible to set polarity of the I2S Word Select signal. This patch
removes the invalid settings.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Instead of having its own definitions for CEA-861 and IEC-60958, the HDMI
driver should use those provided by ALSA. This patch removes the definitions
that are already provided by ALSA.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
Remove the ASoC OMAP HDMI audio codec. The goal of removing the codec
is to, in subsequent patches, give way to the implementation of the HDMI
audio support using the DSS device driver audio interface. This
approach will expose the HDMI audio functionality to any interested entity.
In a separate patch, ASoC will use this new approach to expose HDMI audio
to ALSA.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
To improve readability, split the video_enable HDMI IP operation
into two separate functions for enabling and disabling video.
The video_enable function is also modified to return an error value.
While there, update these operations for the OMAP4 IP accordingly.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
To improve readability, split the audio_enable HDMI IP operation
into two separate functions for enabling and disabling audio.
The audio_enable function is also modified to return an error value.
While there, update these operations for the OMAP4 IP accordingly.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
There exist several display technologies and standards that support audio as
well. Hence, it is relevant to update the DSS device driver to provide an audio
interface that may be used by an audio driver or any other driver interested in
the functionality.
The audio_enable function is intended to prepare the relevant
IP for playback (e.g., enabling an audio FIFO, taking in/out of reset
some IP, enabling companion chips, etc). It is intended to be called before
audio_start. The audio_disable function performs the reverse operation and is
intended to be called after audio_stop.
While a given DSS device driver may support audio, it is possible that for
certain configurations audio is not supported (e.g., an HDMI display using a
VESA video timing). The audio_supported function is intended to query whether
the current configuration of the display supports audio.
The audio_config function is intended to configure all the relevant audio
parameters of the display. In order to make the function independent of any
specific DSS device driver, a struct omap_dss_audio is defined. Its purpose
is to contain all the required parameters for audio configuration. At the
moment, such structure contains pointers to IEC-60958 channel status word and
CEA-861 audio infoframe structures. This should be enough to support HDMI and
DisplayPort, as both are based on CEA-861 and IEC-60958. The omap_dss_audio
structure may be extended in the future if required.
The audio_enable/disable, audio_config and audio_supported functions could be
implemented as functions that may sleep. Hence, they should not be called
while holding a spinlock or a readlock.
The audio_start/audio_stop function is intended to effectively start/stop audio
playback after the configuration has taken place. These functions are designed
to be used in an atomic context. Hence, audio_start should return quickly and be
called only after all the needed resources for audio playback (audio FIFOs,
DMA channels, companion chips, etc) have been enabled to begin data transfers.
audio_stop is designed to only stop the audio transfers. The resources used
for playback are released using audio_disable.
A new enum omap_dss_audio_state is introduced to help the implementations of
the interface to keep track of the audio state. The initial state is _DISABLED;
then, the state transitions to _CONFIGURED, and then, when it is ready to
play audio, to _ENABLED. The state _PLAYING is used when the audio is being
rendered.
Signed-off-by: Ricardo Neri <ricardo.neri@ti.com>
The Beagleboard xM gpio used for TFP410 powerdown is connected through
an I2C attached chip which means setting the GPIO can sleep. Code that
calls tfp410_power_on/off holds a mutex, so sleeping should be fine.
Signed-off-by: Russ Dill <Russ.Dill@ti.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Move the platform-data based display device initialization into a
separate function, so that we may later add of-based initialization.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently use the id of the dsi platform device (dsidev->id) as the
DSI hardware module ID. This works because we assign the ID manually in
arch/arm/mach-omap2/display.c at boot time.
However, with device tree the platform device IDs are automatically
assigned to an arbitrary number, and we can't use it.
Instead of using dsidev->id during operation, this patch stores the
value of dsidev->id to a private field of the dsi driver at probe(). The
future device tree code can thus set the private field with some other
way.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Now that each output driver creates their own display devices, the
output drivers can also initialize those devices.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Currently the higher level omapdss platform driver gets the list of
displays in its platform data, and uses that list to create the
omap_dss_device for each display.
With DT, the logical way to do the above is to list the displays under
each individual output, i.e. we'd have "dpi" node, under which we would
have the display that uses DPI. In other words, each output driver
handles the displays that use that particular output.
To make the current code ready for DT, this patch modifies the output
drivers so that each of them creates the display devices which use that
output. However, instead of changing the platform data to suit this
method, each output driver is passed the full list of displays, and the
drivers pick the displays that are meant for them. This allows us to
keep the old platform data, and thus we avoid the need to change the
board files.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
We currently have a two ways to set a "default panel device" for dss, to
which the overlays are connected when the omapdss driver is loaded:
- in textual format (name of the display) as cmdline parameter
- as a pointer to the panel device from board file via pdata
The current code handles this in a bit too complex way by using both of
the above methods during runtime. However, with DT we don't have pdata
anymore, so the code handling the second case won't work anymore. The
current code has also the problem that it modifies the platform_data.
This patch simplifies the code a bit by using the pointer method only
inside the probe function, and stores the name of the panel device. This
way we only need to handle the textual format during operation and also
avoid modifying the platform_data.
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>