kernel_optimize_test/arch/x86/kernel/efi_32.c
Huang, Ying e429795c68 x86: EFI runtime service support: remove duplicated code from efi_32.c
This patch removes the duplicated code between efi_32.c and efi.c.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 13:31:19 +01:00

292 lines
7.3 KiB
C

/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 1.0
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999-2002 Hewlett-Packard Co.
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
*
* All EFI Runtime Services are not implemented yet as EFI only
* supports physical mode addressing on SoftSDV. This is to be fixed
* in a future version. --drummond 1999-07-20
*
* Implemented EFI runtime services and virtual mode calls. --davidm
*
* Goutham Rao: <goutham.rao@intel.com>
* Skip non-WB memory and ignore empty memory ranges.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/efi.h>
#include <linux/kexec.h>
#include <asm/setup.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
#define PFX "EFI: "
/*
* To make EFI call EFI runtime service in physical addressing mode we need
* prelog/epilog before/after the invocation to disable interrupt, to
* claim EFI runtime service handler exclusively and to duplicate a memory in
* low memory space say 0 - 3G.
*/
static unsigned long efi_rt_eflags;
static DEFINE_SPINLOCK(efi_rt_lock);
static pgd_t efi_bak_pg_dir_pointer[2];
void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
{
unsigned long cr4;
unsigned long temp;
struct desc_ptr gdt_descr;
spin_lock(&efi_rt_lock);
local_irq_save(efi_rt_eflags);
/*
* If I don't have PSE, I should just duplicate two entries in page
* directory. If I have PSE, I just need to duplicate one entry in
* page directory.
*/
cr4 = read_cr4();
if (cr4 & X86_CR4_PSE) {
efi_bak_pg_dir_pointer[0].pgd =
swapper_pg_dir[pgd_index(0)].pgd;
swapper_pg_dir[0].pgd =
swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
} else {
efi_bak_pg_dir_pointer[0].pgd =
swapper_pg_dir[pgd_index(0)].pgd;
efi_bak_pg_dir_pointer[1].pgd =
swapper_pg_dir[pgd_index(0x400000)].pgd;
swapper_pg_dir[pgd_index(0)].pgd =
swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
temp = PAGE_OFFSET + 0x400000;
swapper_pg_dir[pgd_index(0x400000)].pgd =
swapper_pg_dir[pgd_index(temp)].pgd;
}
/*
* After the lock is released, the original page table is restored.
*/
local_flush_tlb();
gdt_descr.address = __pa(get_cpu_gdt_table(0));
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
}
void efi_call_phys_epilog(void) __releases(efi_rt_lock)
{
unsigned long cr4;
struct desc_ptr gdt_descr;
gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
gdt_descr.size = GDT_SIZE - 1;
load_gdt(&gdt_descr);
cr4 = read_cr4();
if (cr4 & X86_CR4_PSE) {
swapper_pg_dir[pgd_index(0)].pgd =
efi_bak_pg_dir_pointer[0].pgd;
} else {
swapper_pg_dir[pgd_index(0)].pgd =
efi_bak_pg_dir_pointer[0].pgd;
swapper_pg_dir[pgd_index(0x400000)].pgd =
efi_bak_pg_dir_pointer[1].pgd;
}
/*
* After the lock is released, the original page table is restored.
*/
local_flush_tlb();
local_irq_restore(efi_rt_eflags);
spin_unlock(&efi_rt_lock);
}
int is_available_memory(efi_memory_desc_t * md)
{
if (!(md->attribute & EFI_MEMORY_WB))
return 0;
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return 1;
}
return 0;
}
/*
* We need to map the EFI memory map again after paging_init().
*/
void __init efi_map_memmap(void)
{
memmap.map = NULL;
memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
(memmap.nr_map * memmap.desc_size));
if (memmap.map == NULL)
printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
}
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI
* memory descriptor that has memory that is available for kernel use.
*/
void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
{
int prev_valid = 0;
struct range {
unsigned long start;
unsigned long end;
} uninitialized_var(prev), curr;
efi_memory_desc_t *md;
unsigned long start, end;
void *p;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if ((md->num_pages == 0) || (!is_available_memory(md)))
continue;
curr.start = md->phys_addr;
curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
if (!prev_valid) {
prev = curr;
prev_valid = 1;
} else {
if (curr.start < prev.start)
printk(KERN_INFO PFX "Unordered memory map\n");
if (prev.end == curr.start)
prev.end = curr.end;
else {
start =
(unsigned long) (PAGE_ALIGN(prev.start));
end = (unsigned long) (prev.end & PAGE_MASK);
if ((end > start)
&& (*callback) (start, end, arg) < 0)
return;
prev = curr;
}
}
}
if (prev_valid) {
start = (unsigned long) PAGE_ALIGN(prev.start);
end = (unsigned long) (prev.end & PAGE_MASK);
if (end > start)
(*callback) (start, end, arg);
}
}
void __init
efi_initialize_iomem_resources(struct resource *code_resource,
struct resource *data_resource,
struct resource *bss_resource)
{
struct resource *res;
efi_memory_desc_t *md;
void *p;
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
md = p;
if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
0x100000000ULL)
continue;
res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
switch (md->type) {
case EFI_RESERVED_TYPE:
res->name = "Reserved Memory";
break;
case EFI_LOADER_CODE:
res->name = "Loader Code";
break;
case EFI_LOADER_DATA:
res->name = "Loader Data";
break;
case EFI_BOOT_SERVICES_DATA:
res->name = "BootServices Data";
break;
case EFI_BOOT_SERVICES_CODE:
res->name = "BootServices Code";
break;
case EFI_RUNTIME_SERVICES_CODE:
res->name = "Runtime Service Code";
break;
case EFI_RUNTIME_SERVICES_DATA:
res->name = "Runtime Service Data";
break;
case EFI_CONVENTIONAL_MEMORY:
res->name = "Conventional Memory";
break;
case EFI_UNUSABLE_MEMORY:
res->name = "Unusable Memory";
break;
case EFI_ACPI_RECLAIM_MEMORY:
res->name = "ACPI Reclaim";
break;
case EFI_ACPI_MEMORY_NVS:
res->name = "ACPI NVS";
break;
case EFI_MEMORY_MAPPED_IO:
res->name = "Memory Mapped IO";
break;
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
res->name = "Memory Mapped IO Port Space";
break;
default:
res->name = "Reserved";
break;
}
res->start = md->phys_addr;
res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
if (request_resource(&iomem_resource, res) < 0)
printk(KERN_ERR PFX "Failed to allocate res %s : "
"0x%llx-0x%llx\n", res->name,
(unsigned long long)res->start,
(unsigned long long)res->end);
/*
* We don't know which region contains kernel data so we try
* it repeatedly and let the resource manager test it.
*/
if (md->type == EFI_CONVENTIONAL_MEMORY) {
request_resource(res, code_resource);
request_resource(res, data_resource);
request_resource(res, bss_resource);
#ifdef CONFIG_KEXEC
request_resource(res, &crashk_res);
#endif
}
}
}