-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAT3NKzROxKuMESys7AQKElw/+JyDxJSlj+g+nymkx8IVVuU8CsEwNLgRk
8KEnRfLhGtkXFLSJYWO6jzGo16F8Uqli1PdMFte/wagSv0285/HZaKlkkBVHdJ/m
u40oSjgT013bBh6MQ0Oaf8pFezFUiQB5zPOA9QGaLVGDLXCmgqUgd7exaD5wRIwB
ZmyItjZeAVnDfk1R+ZiNYytHAi8A5wSB+eFDCIQYgyulA1Igd1UnRtx+dRKbvc/m
rWQ6KWbZHIdvP1ksd8wHHkrlUD2pEeJ8glJLsZUhMm/5oMf/8RmOCvmo8rvE/qwl
eDQ1h4cGYlfjobxXZMHqAN9m7Jg2bI946HZjdb7/7oCeO6VW3FwPZ/Ic75p+wp45
HXJTItufERYk6QxShiOKvA+QexnYwY0IT5oRP4DrhdVB/X9cl2MoaZHC+RbYLQy+
/5VNZKi38iK4F9AbFamS7kd0i5QszA/ZzEzKZ6VMuOp3W/fagpn4ZJT1LIA3m4A9
Q0cj24mqeyCfjysu0TMbPtaN+Yjeu1o1OFRvM8XffbZsp5bNzuTDEvviJ2NXw4vK
4qUHulhYSEWcu9YgAZXvEWDEM78FXCkg2v/CrZXH5tyc95kUkMPcgG+QZBB5wElR
FaOKpiC/BuNIGEf02IZQ4nfDxE90QwnDeoYeV+FvNj9UEOopJ5z5bMPoTHxm4cCD
NypQthI85pc=
=G9mT
-----END PGP SIGNATURE-----
Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
Disintegrate asm/system.h for C6X.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
cc: linux-c6x-dev@linux-c6x.org
Commit 33bf56106d ("feature removal of io_remap_page_range()") removed
io_remap_page_range(), but it is still included in some arch header
files. It has no in-tree users.
Signed-off-by: Javi Merino <javi.merino@arm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This branch takes the PowerPC irq_host infrastructure (reverse mapping
from Linux IRQ numbers to hardware irq numbering), generalizes it,
renames it to irq_domain, and makes it available to all architectures.
Originally the plan has been to create an all-new irq_domain
implementation which addresses some of the powerpc shortcomings such
as not handling 1:1 mappings well, but doing that proved to be far
more difficult and invasive than generalizing the working code and
refactoring it in-place. So, this branch rips out the 'new'
irq_domain and replaces it with the modified powerpc version (in a
fully bisectable way of course). It converts all users over to the
new API and makes irq_domain selectable on any architecture.
No architecture is forced to enable irq_domain, but the infrastructure
is required for doing OpenFirmware style irq translations. It will
even work on SPARC even though SPARC has it's own mechanism for
translating irqs at boot time. MIPS, microblaze, embedded x86 and c6x
are converted too.
The resulting irq_domain code is probably still too verbose and can be
optimized more, but that can be done incrementally and is a task for
follow-on patches.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPZ1yiAAoJEEFnBt12D9kB4yIQAJvCfTPL65sCYVD6i9RnVHtR
ahwddtd0AtT+UYLU8Xg2fZgVi6cmupDGnqkBixzZD3xxSTERqm7Snqa0ugklfeAi
B6Zqf/K17H5hJNaoQ3fkNauow8m7ZYOeEH2vVUvkb3woWS9Wm7OGd+BvcIBgYSGe
Aaoumhu7kDxFkii0qz3x/+kvsb6DRp2HtSPWj+APL/kNjdiO4JBOihtcc/lX6d47
bsZLiEMzHUFV4ApJNwqmfDnf54oMrHmrRJxgQHIMjeJC5or9I3Do8wDGe/aTF5xO
5GVpxCQsTlJMjTBWlAFtpTwCJB6y76EHQrHc7WzLlq8OJSsxApOke8M0BzXFrfMy
CU7UUpTvNZTLpZibLCEQKemv1+oNOkfFylsHxfek2MCqx0W6W4FHEGV3qE/GtgV9
+vurA9hNNp7VM0FGRGigcUr3woYdHLdEVQrlnL7Z9AgBu1W44MZLaai7iRVZOeCT
ZQ9++v2PJJ8vHT8kdkgTdiRpnEhmv84MX/GBT7ilWFEMIVeT5zhGkIBojzNgyzGc
7cvermmM0P8h+unkDgmzmSbDxo0PboqVKeoO71AOBhA6MmR9iom7XkuNdHhoOwy2
4A5xT1srbhJDbuv15BBREBV24TywpZ4a1+4nwQT4L1fXe+HfCxeEWexGcKQMRcIt
dAelOHTQ+ZGkOKvXeW05
=ruGA
-----END PGP SIGNATURE-----
Merge tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6
Pull irq_domain support for all architectures from Grant Likely:
"Generialize powerpc's irq_host as irq_domain
This branch takes the PowerPC irq_host infrastructure (reverse mapping
from Linux IRQ numbers to hardware irq numbering), generalizes it,
renames it to irq_domain, and makes it available to all architectures.
Originally the plan has been to create an all-new irq_domain
implementation which addresses some of the powerpc shortcomings such
as not handling 1:1 mappings well, but doing that proved to be far
more difficult and invasive than generalizing the working code and
refactoring it in-place. So, this branch rips out the 'new'
irq_domain and replaces it with the modified powerpc version (in a
fully bisectable way of course). It converts all users over to the
new API and makes irq_domain selectable on any architecture.
No architecture is forced to enable irq_domain, but the infrastructure
is required for doing OpenFirmware style irq translations. It will
even work on SPARC even though SPARC has it's own mechanism for
translating irqs at boot time. MIPS, microblaze, embedded x86 and c6x
are converted too.
The resulting irq_domain code is probably still too verbose and can be
optimized more, but that can be done incrementally and is a task for
follow-on patches."
* tag 'irqdomain-for-linus' of git://git.secretlab.ca/git/linux-2.6: (31 commits)
dt: fix twl4030 for non-dt compile on x86
mfd: twl-core: Add IRQ_DOMAIN dependency
devicetree: Add empty of_platform_populate() for !CONFIG_OF_ADDRESS (sparc)
irq_domain: Centralize definition of irq_dispose_mapping()
irq_domain/mips: Allow irq_domain on MIPS
irq_domain/x86: Convert x86 (embedded) to use common irq_domain
ppc-6xx: fix build failure in flipper-pic.c and hlwd-pic.c
irq_domain/microblaze: Convert microblaze to use irq_domains
irq_domain/powerpc: Replace custom xlate functions with library functions
irq_domain/powerpc: constify irq_domain_ops
irq_domain/c6x: Use library of xlate functions
irq_domain/c6x: constify irq_domain structures
irq_domain/c6x: Convert c6x to use generic irq_domain support.
irq_domain: constify irq_domain_ops
irq_domain: Create common xlate functions that device drivers can use
irq_domain: Remove irq_domain_add_simple()
irq_domain: Remove 'new' irq_domain in favour of the ppc one
mfd: twl-core.c: Fix the number of interrupts managed by twl4030
of/address: add empty static inlines for !CONFIG_OF
irq_domain: Add support for base irq and hwirq in legacy mappings
...
The ENDPROC() on sys_fadvise64_c6x() in arch/c6x/kernel/entry.S is
outside of the conditional block with the matching ENTRY() macro. This
leads a newer (v2.22 vs. v2.20) assembler to complain:
/tmp/ccGZBaPT.s: Assembler messages:
/tmp/ccGZBaPT.s: Error: .size expression for sys_fadvise64_c6x does not evaluate to a constant
The conditional block became dead code when c6x switched to generic
unistd.h and should be removed along with the offending ENDPROC().
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
There was a latent typo in the C6X KSTK_EIP and KSTK_ESP macros which
caused a problem with a new patch which used them. The broken definitions
were of the form:
#define KSTK_FOO(tsk) (task_pt_regs(task)->foo)
Note the use of task vs tsk. This actually worked before because the
only place in the kernel which used these macros passed in a local
pointer named task.
Signed-off-by: Mark Salter <msalter@redhat.com>
The c6x irq controllers don't need to define custom .xlate hooks
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Rob Herring <rob.herring@calxeda.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
The C6X IRQ support was copied almost verbatim from the PowerPC virtual IRQ
code. The PowerPC code was used as the basis for generic irq_domain support,
so this patch mostly copies what what done to arch/powerpc by Grant Likely
in his irq_domain patch series.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
This hooks dtc into Kbuild's dependency system.
Thus, for example, "make dtbs" will rebuild tegra-harmony.dtb if only
tegra20.dtsi has changed yet tegra-harmony.dts has not. The previous
lack of this feature recently caused me to have very confusing "git
bisect" results.
For ARM, it's obvious what to add to $(targets). I'm not familiar enough
with other architectures to know what to add there. Powerpc appears to
already add various .dtb files into $(targets), but the other archs may
need something added to $(targets) to work.
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Acked-by: Shawn Guo <shawn.guo@linaro.org>
Acked-by: Mark Salter <msalter@redhat.com>
The following commits replaced the tick_nohz_{stop,restart}_sched_tick
API with separate tick and rcu calls:
280f06774a2bbb6817c01268fbc746
This patch replaces the C6X use of the old API with the newer interfaces.
Signed-off-by: Mark Salter <msalter@redhat.com>
Commit ccbc60d3e1 requires CPU
topology information even in !SMP cases. This requires C6X to
add a call tp register_cpu() in order to avoid a panic at
boot time.
Signed-off-by: Mark Salter <msalter@redhat.com>
Recent memblock related commits require the following C6X changes:
* commit 24aa07882b
asm/memblock.h no longer required
* commit 1440c4e2c9
memblock_analyze() no longer needed to update total size
* commit fe091c208a
memblock_init() no longer needed
Signed-off-by: Mark Salter <msalter@redhat.com>
Some SoCs have a timer block enable controlled through the DSCR registers.
There is a problem in the timer64 driver initialization where the code
accesses a timer register to get the divisor used to calculate timer clock
rate. If the timer block has not been enabled when this register read takes
place, an exception is generated. This patch makes sure that the timer block
is enabled before accessing the registers.
Signed-off-by: Mark Salter <msalter@redhat.com>
All SoCs provide an area of device configuration registers called the DSCR. The
location of specific registers as well as their use varies considerably from
implementation to implementation. Rather than having to rely on additional
SoC-specific DSCR code for each new supported SoC, this code generalize things
as much as possible using device tree properties. Initialization must take
place early on (setup_arch time) in case the event timer device needs to be
enable via the DSCR.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Several SoC parts provide a simple bridge to support external memory mapped
devices. This code probes the device tree for an EMIF node and sets up the
bridge registers if such a node is found. Beyond initial set up, there is no
further need to access the bridge control registers. External devices on the
bus are accessed through their MMIO registers using suitable drivers. The
bridge hardware does provide for timeout and other error interrupts, but these
are not yet supported.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
This patch provides a soc_ops struct which provides hooks for SoC functionality
which doesn't fit well into other places.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
The C6X SoCs contain several PLL controllers each with up to 16 clock outputs
feeding into the cores or peripheral clock domains. The hardware is very similar
to arm/mach-davinci clocks. This is still a work in progress which needs to be
updated once device tree clock binding changes shake out.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
[msalter@redhat.com: add include of linux/module.h to sys_c6x.c]
Signed-off-by: Mark Salter <msalter@redhat.com>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
The C6X architecture currently lacks an MMU so memory management is relatively
simple. There is no bus snooping between L2 and main memory but coherent DMA
memory is supported by making regions of main memory uncached. If such a region
is desired, it can be specified on the commandline with a "memdma=" argument.
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
This is the basic devicetree support for C6X. Currently, four boards are
supported. Each one uses a different SoC part. Two of the four supported
SoCs are multicore. One with 3 cores and the other with 6 cores. There is
no coherency between the core-level caches, so SMP is not an option. It is
possible to run separate kernel instances on the various cores. There is
currently no C6X bootloader support for device trees so we build in the DTB
for now.
There are some interesting twists to the hardware which are of note for device
tree support. Each core has its own interrupt controller which is controlled
by special purpose core registers. This core controller provides 12 general
purpose prioritized interrupt sources. Each core is contained within a
hardware "module" which provides L1 and L2 caches, power control, and another
interrupt controller which cascades into the core interrupt controller. These
core module functions are controlled by memory mapped registers. The addresses
for these registers are the same for each core. That is, when coreN accesses
a module-level MMIO register at a given address, it accesses the register for
coreN even though other cores would use the same address to access the register
in the module containing those cores. Other hardware modules (timers, enet, etc)
which are memory mapped can be accessed by all cores.
The timers need some further explanation for multicore SoCs. Even though all
timer control registers are visible to all cores, interrupt routing or other
considerations may make a given timer more suitable for use by a core than
some other timer. Because of this and the desire to have the same image run
on more than one core, the timer nodes have a "ti,core-mask" property which
is used by the driver to scan for a suitable timer to use.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
This patch provides the early boot code for C6X architecture. There is a
16 entry vector table which is used to direct reset and interrupt events. The
vector table entries contain a small amount of code (maximum of 8 opcodes)
which simply branches to the actual event handling code.
The head.S code simply clears BSS, setups up a few control registers, and calls
machine_init followed by start_kernel. The machine_init code in setup.c does
the early flat tree parsing (memory, commandline, etc). At setup_arch time, the
code does the usual memory setup and minimally scans the devicetree for any
needed information.
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>