Now that the buffer cache has it's own LRU, we do not need to use
the page cache to provide persistent caching and reclaim
infrastructure. Convert the buffer cache to use alloc_pages()
instead of the page cache. This will remove all the overhead of page
cache management from setup and teardown of the buffers, as well as
needing to mark pages accessed as we find buffers in the buffer
cache.
By avoiding the page cache, we also remove the need to keep state in
the page_private(page) field for persistant storage across buffer
free/buffer rebuild and so all that code can be removed. This also
fixes the long-standing problem of not having enough bits in the
page_private field to track all the state needed for a 512
sector/64k page setup.
It also removes the need for page locking during reads as the pages
are unique to the buffer and nobody else will be attempting to
access them.
Finally, it removes the buftarg address space lock as a point of
global contention on workloads that allocate and free buffers
quickly such as when creating or removing large numbers of inodes in
parallel. This remove the 16TB limit on filesystem size on 32 bit
machines as the page index (32 bit) is no longer used for lookups
of metadata buffers - the buffer cache is now solely indexed by disk
address which is stored in a 64 bit field in the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
During mount, we can do a quotacheck that involves a bulkstat pass
on all inodes. If there are more inodes in the filesystem than can
be held in memory, we require the inode cache shrinker to run to
ensure that we don't run out of memory.
Unfortunately, the inode cache shrinker is not registered until we
get to the end of the superblock setup process, which is after a
quotacheck is run if it is needed. Hence we need to register the
inode cache shrinker earlier in the mount process so that we don't
OOM during mount. This requires that we also initialise the syncd
work before we register the shrinker, so we nee dto juggle that
around as well.
While there, make sure that we have set up the block sizes in the
VFS superblock correctly before the quotacheck is run so that any
inodes that are cached as a result of the quotacheck have their
block size fields set up correctly.
Cc: stable@kernel.org
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
When inside a transaction and we fail to read a buffer,
xfs_trans_read_buf returns a null buffer pointer and no error.
xfs_do_da_buf() checks the error return, but not the buffer, and as
a result this read failure condition causes a panic when it attempts
to dereference the non-existant buffer.
Make xfs_trans_read_buf() return the same error for this situation
regardless of whether it is in a transaction or not. This means
every caller does not need to check both the error return and the
buffer before proceeding to use the buffer.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
There is an ABBA deadlock between synchronous inode flushing in
xfs_reclaim_inode and xfs_icluster_free. xfs_icluster_free locks the
buffer, then takes inode ilocks, whilst synchronous reclaim takes
the ilock followed by the buffer lock in xfs_iflush().
To avoid this deadlock, separate the inode cluster buffer locking
semantics from the synchronous inode flush semantics, allowing
callers to attempt to lock the buffer but still issue synchronous IO
if it can get the buffer. This requires xfs_iflush() calls that
currently use non-blocking semantics to pass SYNC_TRYLOCK rather
than 0 as the flags parameter.
This allows xfs_reclaim_inode to avoid the deadlock on the buffer
lock and detect the failure so that it can drop the inode ilock and
restart the reclaim attempt on the inode. This allows
xfs_ifree_cluster to obtain the inode lock, mark the inode stale and
release it and hence defuse the deadlock situation. It also has the
pleasant side effect of avoiding IO in xfs_reclaim_inode when it
tries to next reclaim the inode as it is now marked stale.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
On 32 bit systems, vmalloc space is limited and XFS can chew through
it quickly as the vmalloc space is lazily freed. This can result in
failure to map buffers, even when there is apparently large amounts
of vmalloc space available. Hence, if we fail to map a buffer, purge
the aliases that have not yet been freed to hopefuly free up enough
vmalloc space to allow a retry to succeed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Preallocation and hole punch transactions are currently synchronous
and this is causing performance problems in some cases. The
transactions don't need to be synchronous as we don't need to
guarantee the preallocation is persistent on disk until a
fdatasync, fsync, sync operation occurs. If the file is opened
O_SYNC or O_DATASYNC, only then should the transaction be issued
synchronously.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
The new xfs_alert_tag() used a variable named "panic",
and that is to be avoided. Rename it.
Signed-off-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Updating the AGF and transactions counters is duplicated between allocating
and freeing extents. Factor the code into a common helper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Pass a xfs_alloc_arg structure to xfs_alloc_compute_aligned and derive
the alignment and minlen paramters from it. This cleans up the existing
callers, and we'll need even more information from the xfs_alloc_arg
in subsequent patches. Based on a patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
The remaining functionality in debug.[ch] is effectively just assert
handling, conditional debug definitions and hex dumping. The hex
dumping and assert function can be moved into the new printk module,
while the rest can be moved into top-level header files. This allows
fs/xfs/support/debug.[ch] to be completely removed from the
codebase.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Once converted, kill the remainder of the cmn_err() interface.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The "cmn_err" part of the function name is no longer relevant. Rename
the function to xfs_alert_fsblock_zero() to match the new logging
API.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Continue to clean up the error logging code by converting all the
callers of xfs_fs_cmn_err() to the new API. Once done, remove the
unused old API function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The xfs_fs_mount_cmn_err() hides a simple check as to whether the
mount path should output an error or not. Remove the macro and open
code the check.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In certain cases of inode corruption, the xfs_fs_repair_cmn_err()
macro is used to output an extra message in the corruption report.
That extra message is "unmount and run xfs_repair", which really
applies to any corruption report. Each case that this macro is
called (except one) a following call to xfs_corruption_error() is
made to optionally dump more information about the error.
Hence, move the output of "run xfs_repair" to xfs_corruption_error()
so that it is output on all corruption reports. Also, convert the
callers of the repair macro that don't call xfs_corruption_error()
to call it, hence provide consiѕtent error reporting for all cases
where xfs_fs_repair_cmn_err() used to be called.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Continue the conversion of the old cmn_err interface be converting
all the conditional panic tag errors to xfs_alert_tag() and then
removing xfs_cmn_err().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert the xfs log operations to use the new error logging
interfaces. This removes the xlog_{warn,panic} wrappers and makes
almost all errors emit the device they belong to instead of just
refering to "XFS".
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Convert the files in fs/xfs/linux-2.6/ to use the new xfs_<level>
logging format that replaces the old Irix inherited cmn_err()
interfaces. While there, also convert naked printk calls to use the
relevant xfs logging function to standardise output format.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Most of the logging infrastructure in XFS is unneccessary and
designed around the infrastructure supplied by Irix rather than
Linux. To rationalise the logging interfaces, start by introducing
simple printk wrappers similar to the dev_printk() infrastructure.
Later patches will convert code to use this new interface.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Commit 493f3358cb added this call to
xfs_fs_geometry() in order to avoid passing kernel stack data back
to user space:
+ memset(geo, 0, sizeof(*geo));
Unfortunately, one of the callers of that function passes the
address of a smaller data type, cast to fit the type that
xfs_fs_geometry() requires. As a result, this can happen:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted
in: f87aca93
Pid: 262, comm: xfs_fsr Not tainted 2.6.38-rc6-493f3358cb2+ #1
Call Trace:
[<c12991ac>] ? panic+0x50/0x150
[<c102ed71>] ? __stack_chk_fail+0x10/0x18
[<f87aca93>] ? xfs_ioc_fsgeometry_v1+0x56/0x5d [xfs]
Fix this by fixing that one caller to pass the right type and then
copy out the subset it is interested in.
Note: This patch is an alternative to one originally proposed by
Eric Sandeen.
Reported-by: Jeffrey Hundstad <jeffrey.hundstad@mnsu.edu>
Signed-off-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Jeffrey Hundstad <jeffrey.hundstad@mnsu.edu>
Currently we return iodes from xfs_ialloc with just a single reference held.
But we need two references, as one is dropped during transaction commit and
the second needs to be transfered to the VFS. Change xfs_ialloc to use
xfs_iget plus xfs_trans_ijoin_ref to grab two references to the inode,
and remove the now superflous IHOLD calls from all callers. This also
greatly simplifies the error handling in xfs_create and also allow to remove
xfs_trans_iget as no other callers are left.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
During mount we establish references to the RT inodes, which we keep for
the lifetime of the filesystem. Instead of using xfs_trans_iget to grab
additional references when adding RT inodes to transactions use the
combination of xfs_ilock and xfs_trans_ijoin_ref, which archives the same
end result with less overhead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Right now we, are relying on the fact that when we attempt to
actually do the discard, blkdev_issue_discar() returns -EOPNOTSUPP
and the user is informed that the device does not support discard.
However, in the case where the we do not hit any suitable free
extent to trim in FITRIM code, it will finish without any error.
This is very confusing, because it seems that FITRIM was successful
even though the device does not actually supports discard.
Solution: Check for the discard support before attempt to search for
free extents.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
The FSGEOMETRY_V1 ioctl (and its compat equivalent) calls out to
xfs_fs_geometry() with a version number of 3. This code path does not
fill in the logsunit member of the passed xfs_fsop_geom_t, leading to
the leaking of four bytes of uninitialized stack data to potentially
unprivileged callers.
v2 switches to memset() to avoid future issues if structure members
change, on suggestion of Dave Chinner.
Signed-off-by: Dan Rosenberg <drosenberg@vsecurity.com>
Reviewed-by: Eugene Teo <eugeneteo@kernel.org>
Signed-off-by: Alex Elder <aelder@sgi.com>
The rt bitmap and summary inodes do not participate in the normal inode
locking protocol. Instead the rt bitmap inode can be locked in any
transaction involving rt allocations, and the both of the rt inodes can
be locked at the same time. Add specific lockdep subclasses for the rt
inodes to prevent lockdep from blowing up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
We can easily set the extsize flag without setting an extent size
hint, or one that evaluates to zero. Historically the di_extsize
field was only used when it was non-zero, but the commit
"Cleanup inode extent size hint extraction"
broke this. Restore the old behaviour, thus fixing xfsqa 090 with
a debug kernel.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Currently both xfs_rtpick_extent and xfs_rtallocate_extent call
xfs_trans_iget to grab and lock the rt bitmap inode, which results in a
deadlock since the removal of the lock recursion counters in commit
"xfs: simplify inode to transaction joining"
Fix this by acquiring and locking the inode in xfs_bmap_rtalloc before
calling into xfs_rtpick_extent and xfs_rtallocate_extent.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
When filling in the middle of a previous delayed allocation in
xfs_bmap_add_extent_delay_real, set br_startblock of the new delay
extent to the right to nullstartblock instead of 0 before inserting
the extent into the ifork (xfs_iext_insert), rather than setting
br_startblock afterward.
Adding the extent into the ifork with br_startblock=0 can lead to
the extent being copied into the btree by xfs_bmap_extent_to_btree
if we happen to convert from extents format to btree format before
updating br_startblock with the correct value. The unexpected
addition of this delay extent to the btree can cause subsequent
XFS_WANT_CORRUPTED_GOTO filesystem shutdown in several
xfs_bmap_add_extent_delay_real cases where we are converting a delay
extent to real and unexpectedly find an extent already inserted.
For example:
911 case BMAP_LEFT_FILLING:
912 /*
913 * Filling in the first part of a previous delayed allocation.
914 * The left neighbor is not contiguous.
915 */
916 trace_xfs_bmap_pre_update(ip, idx, state, _THIS_IP_);
917 xfs_bmbt_set_startoff(ep, new_endoff);
918 temp = PREV.br_blockcount - new->br_blockcount;
919 xfs_bmbt_set_blockcount(ep, temp);
920 xfs_iext_insert(ip, idx, 1, new, state);
921 ip->i_df.if_lastex = idx;
922 ip->i_d.di_nextents++;
923 if (cur == NULL)
924 rval = XFS_ILOG_CORE | XFS_ILOG_DEXT;
925 else {
926 rval = XFS_ILOG_CORE;
927 if ((error = xfs_bmbt_lookup_eq(cur, new->br_startoff,
928 new->br_startblock, new->br_blockcount,
929 &i)))
930 goto done;
931 XFS_WANT_CORRUPTED_GOTO(i == 0, done);
With the bogus extent in the btree we shutdown the filesystem at
931. The conversion from extents to btree format happens when the
number of extents in the inode increases above ip->i_df.if_ext_max.
xfs_bmap_extent_to_btree copies extents from the ifork into the
btree, ignoring all delalloc extents which are denoted by
br_startblock having some value of nullstartblock.
SGI-PV: 1013221
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Commit 368e136 ("xfs: remove duplicate code from dquot reclaim") fails
to unlock the dquot freelist when the number of loop restarts is
exceeded in xfs_qm_dqreclaim_one(). This causes hangs in memory
reclaim.
Rework the loop control logic into an unwind stack that all the
different cases jump into. This means there is only one set of code
that processes the loop exit criteria, and simplifies the unlocking
of all the items from different points in the loop. It also fixes a
double increment of the restart counter from the qi_dqlist_lock
case.
Reported-by: Malcolm Scott <lkml@malc.org.uk>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Failure to commit a transaction into the CIL is not handled
correctly. This currently can only happen when racing with a
shutdown and requires an explicit shutdown check, so it rare and can
be avoided. Remove the shutdown check and make the CIL commit a void
function to indicate it will always succeed, thereby removing the
incorrectly handled failure case.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
The extent size hint can be set to larger than an AG. This means
that the alignment process can push the range to be allocated
outside the bounds of the AG, resulting in assert failures or
corrupted bmbt records. Similarly, if the extsize is larger than the
maximum extent size supported, the alignment process will produce
extents that are too large to fit into the bmbt records, resulting
in a different type of assert/corruption failure.
Fix this by limiting extsize at the time іt is set firstly to be
less than MAXEXTLEN, then to be a maximum of half the size of the
AGs in the filesystem for non-realtime inodes. Realtime inodes do
not allocate out of AGs, so don't have to be restricted by the size
of AGs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
When doing delayed allocation, if the allocation size is for a
maximally sized extent, extent size alignment can push it over this
limit. This results in an assert failure in xfs_bmbt_set_allf() as
the extent length is too large to find in the extent record.
Fix this by ensuring that we allow for space that extent size
alignment requires (up to 2 * (extsize -1) blocks as we have to
handle both head and tail alignment) when limiting the maximum size
of the extent.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Delayed allocation extents can be larger than AGs, so when trying to
convert a large range we may scan every AG inside
xfs_bmap_alloc_nullfb() trying to find an AG with a size larger than
an AG. We should stop when we find the first AG with a maximum
possible allocation size. This causes excessive CPU usage when there
are lots of AGs.
The same problem occurs when doing preallocation of a range larger
than an AG.
Fix the problem by limiting real allocation lengths to the maximum
that an AG can support. This means if we have empty AGs, we'll stop
the search at the first of them. If there are no empty AGs, we'll
still scan them all, but that is a different problem....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
rounddown_power_of_2() returns an undefined result when passed a
value of zero. The specualtive delayed allocation code is doing this
when the inode is zero length. Hence occasionally the preallocation
is much, much larger than is necessary (e.g. 8GB for a 270 _byte_
file). Ensure we don't even pass a zero value to this function so
the result of preallocation is always the desired size.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
After test 139, kmemleak shows:
unreferenced object 0xffff880078b405d8 (size 400):
comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s)
hex dump (first 32 bytes):
60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff `..y....`..y....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60
[<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0
[<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0
[<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50
[<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0
[<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90
[<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0
[<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0
[<ffffffff814a970f>] xfs_setattr+0x8df/0xa70
[<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20
[<ffffffff8117dc00>] notify_change+0x170/0x2e0
[<ffffffff81163bf6>] do_truncate+0x66/0xa0
[<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0
[<ffffffff8103a002>] system_call_fastpath+0x16/0x1b
[<ffffffffffffffff>] 0xffffffffffffffff
The cause of the leak is that the "remove" parameter of IOP_UNPIN()
is never set when a CIL push is aborted. This means that the EFI
item is never freed if it was in the push being cancelled. The
problem is specific to delayed logging, but has uncovered a couple
of problems with the handling of IOP_UNPIN(remove).
Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN()
in the CIL commit failure path or the iclog write failure path
because for delayed loging we have no transaction context. Hence we
must only call xfs_trans_del_item() if the log item being unpinned
has an active log item descriptor.
Secondly, xfs_trans_uncommit() does not handle log item descriptor
freeing during the traversal of log items on a transaction. It can
reference a freed log item descriptor when unpinning an EFI item.
Hence it needs to use a safe list traversal method to allow items to
be removed from the transaction during IOP_UNPIN().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf: Validate cpu early in perf_event_alloc()
perf: Find_get_context: fix the per-cpu-counter check
perf: Fix contexted inheritance
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Clear irqstack thread_info
x86: Make relocatable kernel work with new binutils
* 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus: (26 commits)
MIPS: Malta: enable Cirrus FB console
MIPS: add CONFIG_VIRTUALIZATION for virtio support
MIPS: Implement __read_mostly
MIPS: ath79: add common WMAC device for AR913X based boards
MIPS: ath79: Add initial support for the Atheros AP81 reference board
MIPS: ath79: add common SPI controller device
SPI: Add SPI controller driver for the Atheros AR71XX/AR724X/AR913X SoCs
MIPS: ath79: add common GPIO buttons device
MIPS: ath79: add common watchdog device
MIPS: ath79: add common GPIO LEDs device
MIPS: ath79: add initial support for the Atheros PB44 reference board
MIPS: ath79: utilize the MIPS multi-machine support
MIPS: ath79: add GPIOLIB support
MIPS: Add initial support for the Atheros AR71XX/AR724X/AR931X SoCs
MIPS: jump label: Add MIPS support.
MIPS: Use WARN() in uasm for better diagnostics.
MIPS: Optimize TLB handlers for Octeon CPUs
MIPS: Add LDX and LWX instructions to uasm.
MIPS: Use BBIT instructions in TLB handlers
MIPS: Declare uasm bbit0 and bbit1 functions.
...
This patch adds basic support for LM94 to the LM93 driver. LM94 specific
sensors and features are not supported.
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
Acked-by: Jean Delvare <khali@linux-fr.org>
Starting from perf_event_alloc()->perf_init_event(), the kernel
assumes that event->cpu is either -1 or the valid CPU number.
Change perf_event_alloc() to validate this argument early. This
also means we can remove the similar check in
find_get_context().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: gregkh@suse.de
Cc: stable@kernel.org
LKML-Reference: <20110118161032.GC693@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If task == NULL, find_get_context() should always check that cpu
is correct.
Afaics, the bug was introduced by 38a81da2 "perf events: Clean
up pid passing", but even before that commit "&& cpu != -1" was
not exactly right, -ESRCH from find_task_by_vpid() is not
accurate.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Roland McGrath <roland@redhat.com>
Cc: gregkh@suse.de
Cc: stable@kernel.org
LKML-Reference: <20110118161008.GB693@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While most users of a physical Malta board are using the serial port
as the console, a lot of QEMU users would prefer to interact with a
graphical console. Enable the Cirrus FB support in the Malta default
configuration to make that possible. Note that the default console will
still be the serial port, users have to pass "console=tty0" to the
kernel to use the Cirrus FB.
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
To: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/2001/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add CONFIG_VIRTUALIZATION to the MIPS architecture and include the
the virtio code there. Used to enable the virtio drivers under QEMU.
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
To: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/2002/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Just do what everyone else is doing by placing __read_mostly things in
the .data.read_mostly section.
mips_io_port_base can not be read-only (const) and writable
(__read_mostly) at the same time. One of them has to go, so I chose
to eliminate the __read_mostly. It will still get stuck in a portion
of memory that is not adjacent to things that are written, and thus
not be on a dirty cache line, for whatever that is worth.
Signed-off-by: David Daney <ddaney@caviumnetworks.com>
To: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/1702/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add common platform_device and helper code to make the registration
of the built-in wireless MAC easier on the Atheros AR9130/AR9132
based boards. Also register the WMAC device on the AR81 board.
Signed-off-by: Gabor Juhos <juhosg@openwrt.org>
Cc: linux-mips@linux-mips.org
Cc: Imre Kaloz <kaloz@openwrt.org>,
Cc: Luis R. Rodriguez <lrodriguez@atheros.com>
Cc: Cliff Holden <Cliff.Holden@Atheros.com>
Cc: Kathy Giori <Kathy.Giori@Atheros.com>
Patchwork: https://patchwork.linux-mips.org/patch/1962/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>